Suppr超能文献

基于混合灰狼-蝙蝠算法的优化自适应神经模糊推理系统用于从脑电图信号中识别精神分裂症

Optimized adaptive neuro-fuzzy inference system based on hybrid grey wolf-bat algorithm for schizophrenia recognition from EEG signals.

作者信息

Balasubramanian Kishore, Ramya K, Gayathri Devi K

机构信息

Dr Mahalingam College of Engineering and Technology, Pollachi, India.

PA College of Engineering and Technology, Pollachi, India.

出版信息

Cogn Neurodyn. 2023 Feb;17(1):133-151. doi: 10.1007/s11571-022-09817-y. Epub 2022 May 28.

Abstract

Schizophrenia is a chronic mental disorder that impairs a person's thinking capacity, feelings and emotions, behavioural traits, etc., Emotional distortions, delusions, hallucinations, and incoherent speech are all some of the symptoms of schizophrenia, and cause disruption of routine activities. Computer-assisted diagnosis of schizophrenia is significantly needed to give its patients a higher quality of life. Hence, an improved adaptive neuro-fuzzy inference system based on the Hybrid Grey Wolf-Bat Algorithm for accurate prediction of schizophrenia from multi-channel EEG signals is presented in this study. The EEG signals are pre-processed using a Butterworth band pass filter and wICA initially, from which statistical, time-domain, frequency-domain, and spectral features are extracted. Discriminating features are selected using the ReliefF algorithm and are then forwarded to ANFIS for classification into either schizophrenic or normal. ANFIS is optimized by the Hybrid Grey Wolf-Bat Algorithm (HWBO) for better efficiency. The method is experimented on two separate EEG datasets-1 and 2, demonstrating an accuracy of 99.54% and 99.35%, respectively, with appreciable F1-score and MCC. Further experiments reveal the efficiency of the Hybrid Wolf-Bat algorithm in optimizing the ANFIS parameters when compared with traditional ANFIS model and other proven algorithms like genetic algorithm-ANFIS, particle optimization-ANFIS, crow search optimization algorithm-ANFIS and ant colony optimization algorithm-ANFIS, showing high R value and low RSME value. To provide a bias free classification, tenfold cross validation is performed which produced an accuracy of 97.8% and 98.5% on the two datasets respectively. Experimental outcomes demonstrate the superiority of the Hybrid Grey Wolf-Bat Algorithm over the similar techniques in predicting schizophrenia.

摘要

精神分裂症是一种慢性精神障碍,会损害人的思维能力、情感和情绪、行为特征等。情绪扭曲、妄想、幻觉和言语不连贯都是精神分裂症的一些症状,并会导致日常活动中断。迫切需要计算机辅助诊断精神分裂症,以提高患者的生活质量。因此,本研究提出了一种基于混合灰狼 - 蝙蝠算法的改进自适应神经模糊推理系统,用于从多通道脑电图(EEG)信号中准确预测精神分裂症。首先使用巴特沃斯带通滤波器和独立成分分析(wICA)对EEG信号进行预处理,从中提取统计、时域、频域和频谱特征。使用ReliefF算法选择区分特征,然后将其转发到自适应神经模糊推理系统(ANFIS)进行分类,判断是精神分裂症患者还是正常人。通过混合灰狼 - 蝙蝠算法(HWBO)对ANFIS进行优化,以提高效率。该方法在两个独立的EEG数据集 - 1和数据集 - 2上进行了实验,分别展示了99.54%和99.35%的准确率,以及可观的F1分数和马修斯相关系数(MCC)。进一步的实验表明,与传统的ANFIS模型以及其他成熟算法如遗传算法 - ANFIS、粒子群优化 - ANFIS、乌鸦搜索优化算法 - ANFIS和蚁群优化算法 - ANFIS相比,混合灰狼 - 蝙蝠算法在优化ANFIS参数方面具有更高的效率,具有较高的R值和较低的均方根误差(RMSE)值。为了提供无偏差分类,进行了十折交叉验证,在两个数据集上分别产生了97.8%和98.5%的准确率。实验结果证明了混合灰狼 - 蝙蝠算法在预测精神分裂症方面优于类似技术。

相似文献

1
8
Optimization of the ANFIS using a genetic algorithm for physical work rate classification.
Int J Occup Saf Ergon. 2020 Sep;26(3):436-443. doi: 10.1080/10803548.2018.1435445. Epub 2018 Mar 13.
9
Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
J Neurosci Methods. 2005 Oct 30;148(2):113-21. doi: 10.1016/j.jneumeth.2005.04.013. Epub 2005 Jul 28.
10
Automatic classification of schizophrenia patients using resting-state EEG signals.
Phys Eng Sci Med. 2021 Sep;44(3):855-870. doi: 10.1007/s13246-021-01038-7. Epub 2021 Aug 9.

引用本文的文献

2
Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals.
Cogn Neurodyn. 2024 Oct;18(5):2779-2807. doi: 10.1007/s11571-024-10120-1. Epub 2024 May 11.
3

本文引用的文献

1
EEG microstate features for schizophrenia classification.
PLoS One. 2021 May 14;16(5):e0251842. doi: 10.1371/journal.pone.0251842. eCollection 2021.
3
Using a deep recurrent neural network with EEG signal to detect Parkinson's disease.
Ann Transl Med. 2020 Jul;8(14):874. doi: 10.21037/atm-20-5100.
4
Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study.
Indian J Psychiatry. 2020 May-Jun;62(3):273-282. doi: 10.4103/psychiatry.IndianJPsychiatry_91_20. Epub 2020 May 15.
6
An EEG-fNIRS hybridization technique in the four-class classification of alzheimer's disease.
J Neurosci Methods. 2020 Apr 15;336:108618. doi: 10.1016/j.jneumeth.2020.108618. Epub 2020 Feb 8.
7
Automated detection of schizophrenia using nonlinear signal processing methods.
Artif Intell Med. 2019 Sep;100:101698. doi: 10.1016/j.artmed.2019.07.006. Epub 2019 Jul 20.
9
A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
IEEE J Biomed Health Inform. 2020 May;24(5):1333-1343. doi: 10.1109/JBHI.2019.2941222. Epub 2019 Sep 13.
10
3D-CNN based discrimination of schizophrenia using resting-state fMRI.
Artif Intell Med. 2019 Jul;98:10-17. doi: 10.1016/j.artmed.2019.06.003. Epub 2019 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验