Suppr超能文献

通过直接将石墨转化制备用于高性能超级电容器电极的“共生”还原氧化石墨烯/MnO纳米复合材料。

Producing "Symbiotic" Reduced Graphene Oxide/MnO Nanocomposites Directly from Converting Graphite for High-Performance Supercapacitor Electrodes.

作者信息

Gu Yu, Wu Jian, Wang Xiaogong, Liu Weijie, Yan Shu

机构信息

School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.

College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China.

出版信息

ACS Omega. 2020 Jul 24;5(30):18975-18986. doi: 10.1021/acsomega.0c02243. eCollection 2020 Aug 4.

Abstract

Almost all existing methods for preparing reduced graphene oxide/MnO (RGO/MnO) composites are based on the synthetized graphene or graphene oxides (GO), which make them complicated and high-cost processes. Here, we reported a new method, which is able to convert graphite directly to RGO/MnO composites. Thus, it is simpler, more economical, and productive. The structure of RGO/MnO inheriting intermediate product GO/MnO composites that are formed by the present method is a novel three-dimensional "multilayer steamed bread" nanostructure, which constitutes mutually beneficial "symbiosis". The nano-MnO supports the space between RGO layers and further to the combination of RGO to self-assemble into large-sized (>40 μm) nanocomposites. Meanwhile, the formed MnO particles were small (60 × 10 nm) in diameter and distributed homogeneously without the use of any template and surfactant. Because the structure and nanosize of composite cause the excellent electrochemical properties, RGO/MnO electrodes deliver an enhanced specific capacitance of 438.7 F/g at 0.3 A/g and outstanding cyclic stability (77.5% of its initial capacitance is retained after 1000 cycles).

摘要

几乎所有现有的制备还原氧化石墨烯/二氧化锰(RGO/MnO)复合材料的方法都是基于合成的石墨烯或氧化石墨烯(GO),这使得这些过程复杂且成本高昂。在此,我们报道了一种新方法,该方法能够将石墨直接转化为RGO/MnO复合材料。因此,它更简单、更经济且产量更高。通过本方法形成的继承中间产物GO/MnO复合材料的RGO/MnO结构是一种新颖的三维“多层馒头”纳米结构,构成了互利的“共生”关系。纳米MnO支撑着RGO层之间的空间,并进一步促进RGO自组装成大尺寸(>40μm)的纳米复合材料。同时,所形成的MnO颗粒直径小(60×10nm)且分布均匀,无需使用任何模板和表面活性剂。由于复合材料的结构和纳米尺寸导致了优异的电化学性能,RGO/MnO电极在0.3A/g时具有438.7F/g的增强比电容和出色的循环稳定性(1000次循环后保留其初始电容的77.5%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验