Suppr超能文献

TiO薄膜中生物材料诱导的稳定电阻开关机制:活性间隙位点/离子在最小电流泄漏和优异生物活性中的作用。

Biomaterial-Induced Stable Resistive Switching Mechanism in TiO Thin Films: The Role of Active Interstitial Sites/Ions in Minimum Current Leakage and Superior Bioactivity.

作者信息

Abbasi Misbah Sehar, Irshad Muhammad Sultan, Arshad Naila, Ahmed Iftikhar, Idrees Muhammad, Ahmad Shafiq, Wei Zhou, Sharaf Mohamed, Al Firdausi Muhammad Dzulqarnain

机构信息

School of Energy and Power Engineering, Xi'an Jiaotong University, (XJTU), Xi'an 710049, China.

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.

出版信息

ACS Omega. 2020 Jul 21;5(30):19050-19060. doi: 10.1021/acsomega.0c02410. eCollection 2020 Aug 4.

Abstract

Leakage of current in oxide layers is the main issue for higher speed and denser resistive random-access memory. Defect engineering played a substantial role in meeting this challenge by doping or producing controlled interstitial defects or active sites. These controlled active sites enabled memory cells to form a stable and reproducible conduction filament following an electrochemical metallization model. In this study, a defect-abundant lime peel extract (LPE)-mediated anatase TiO thin film was fabricated using a simple hydrothermal route. The detailed structural and morphological analysis of the bioactive anatase TiO-LPE thin film reveals the homogeneous growth of TiO flowers and distinct features in terms of controlled defects as compared to simple anatase TiO. These interstitial defects (Ti and Ti) behave as active sites for cation migrations along highly conductive K ions because of the mediation of LPE. The defect-free surface reveals slight surface roughness (4.8 nm) that successfully minimizes leakage of current. The strategy enabled a reliable conductive bridge filament, which can replicate with no more electric degradation. The Ag/TiO-LPE/FTO-based memory cell demonstrates reproducible bipolar resistive switching along with a high ON/OFF ratio (>10), excellent endurance (1.5 × 10 cycles), and long-term retention (10 s) without any electrical degradation. Furthermore, green-synthesized TiO-LPE nanoparticles have shown superior antibacterial activity as compared to other green syntheses of different plants or fruits against the toxic microorganisms present in inorganic media.

摘要

氧化物层中的电流泄漏是高速和高密度电阻式随机存取存储器的主要问题。缺陷工程通过掺杂或产生可控的间隙缺陷或活性位点在应对这一挑战方面发挥了重要作用。这些可控的活性位点使存储单元能够按照电化学金属化模型形成稳定且可重复的导电细丝。在本研究中,采用简单的水热法制备了富含缺陷的石灰皮提取物(LPE)介导的锐钛矿型TiO薄膜。对生物活性锐钛矿型TiO-LPE薄膜进行的详细结构和形态分析表明,与简单的锐钛矿型TiO相比,TiO花均匀生长且在可控缺陷方面具有明显特征。由于LPE的介导作用,这些间隙缺陷(Ti和Ti)充当了阳离子沿高导电率K离子迁移的活性位点。无缺陷表面显示出轻微的表面粗糙度(4.8纳米),成功地将电流泄漏降至最低。该策略实现了可靠的导电桥细丝,其能够复制且不会出现更多电降解。基于Ag/TiO-LPE/FTO的存储单元展示出可重复的双极电阻切换,同时具有高开关比(>10)、出色的耐久性(1.5×10次循环)和长期保持性(10秒),且无任何电降解。此外,与不同植物或水果的其他绿色合成方法相比,绿色合成的TiO-LPE纳米颗粒对无机介质中存在的有毒微生物表现出优异的抗菌活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验