Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Phys Chem Chem Phys. 2020 Aug 24;22(32):17880-17889. doi: 10.1039/d0cp03163a.
Polyhydroxyalkanoates (PHAs) represent an emerging class of biosynthetic and biodegradable polyesters that exhibit considerable potential to replace petroleum-based plastics towards a sustainable future. Despite the promise, general structure-property mappings within this class of polymers remain largely unexplored. An efficient exploration of this vast chemical space calls for the development and validation of predictive methods for accurate estimation of a diverse range of properties for PHA-based polymers. Towards this aim, here we present and validate the results of our molecular dynamics (MD) simulation based approach aimed at predicting glass transition temperatures (Tg) of PHA-based polymers. Since generally available and widely used polymer forcefields exhibit a relatively poor performance for Tg predictions, we have developed a new forcefield by modifying the polymer consistent force field (PCFF) via refining a selected set of torsion potentials of the polymer backbone using accurate density functional theory (DFT) computations. After carefully assessing the dependence of critical simulation parameters, such as, polymer chain length, number of polymer chains, supercell size, and thermal quenching rate used in the simulation, the applicability and transferability of the modified PCFF (mPCFF) is demonstrated by directly comparing the computed Tg predictions of various polymers with different chemistries, polymer side chain lengths and functional groups forming the polymer side chains against the respective experimentally measured values. Furthermore, the transport properties such as self-diffusion coefficient and viscosity are computationally determined and their well-known correlation with the target properties is demonstrated. Lastly, we have employed the developed approach to predict Tg values for a number of yet-to-be-synthesized PHA-based polymers with a diverse set of functional groups in the polymer side chains. The results are further rationalized by correlating the predicted Tg values with the inter-chain H-bond formation tendencies of the different side chain functional groups. This work represents an important first step towards computationally guided design of PHA-based functional polymers and opens up new directions for a systematic investigation of composition- and configuration-dependent structure-property relationships in more complex binary and ternary copolymer systems.
聚羟基脂肪酸酯 (PHA) 是一类新兴的生物合成和可生物降解聚酯,具有取代石油基塑料、实现可持续未来的巨大潜力。尽管前景广阔,但这类聚合物的一般结构-性能关系在很大程度上仍未得到探索。要有效地探索这一广阔的化学空间,就需要开发和验证预测方法,以准确估计基于 PHA 的聚合物的各种性能。为此,我们提出并验证了基于分子动力学 (MD) 模拟的方法来预测基于 PHA 的聚合物的玻璃化转变温度 (Tg)。由于一般可用且广泛使用的聚合物力场在 Tg 预测方面表现出相对较差的性能,我们通过使用准确的密度泛函理论 (DFT) 计算来修正聚合物主链的选定扭转势,从而开发了一种新的力场。在仔细评估了模拟中使用的关键模拟参数的依赖性,例如聚合物链长、聚合物链数、超胞大小和热淬火速率之后,通过直接比较不同化学性质、聚合物侧链长度和形成聚合物侧链的官能团的各种聚合物的计算 Tg 预测值与相应的实验测量值,证明了经修正的 PCFF (mPCFF) 的适用性和可转移性。此外,还通过计算确定了自扩散系数和粘度等输运性质,并证明了它们与目标性质的良好相关性。最后,我们使用所开发的方法预测了一系列具有不同聚合物侧链官能团的尚未合成的基于 PHA 的聚合物的 Tg 值。通过将预测的 Tg 值与不同侧链官能团的链间氢键形成趋势相关联,进一步对结果进行了合理化。这项工作代表了朝着基于 PHA 的功能聚合物的计算指导设计迈出的重要一步,并为在更复杂的二元和三元共聚物系统中系统研究成分和构型依赖性的结构-性能关系开辟了新的方向。