Suppr超能文献

顺式-1,4-聚异戊二烯的热机械性能:通过分子动力学模拟研究温度和应变速率对力学性能的影响

Thermo-Mechanical Properties of Cis-1,4-Polyisoprene: Influence of Temperature and Strain Rate on Mechanical Properties by Molecular Dynamic Simulations.

作者信息

Alamfard Tannaz, Breitkopf Cornelia

机构信息

Institute of Power Engineering, Faculty of Mechanical Science and Engineering, Technical University Dresden, 01069 Dresden, Germany.

出版信息

Polymers (Basel). 2025 Apr 26;17(9):1179. doi: 10.3390/polym17091179.

Abstract

Cis-1,4-polyisoprene is a widely used elastomer that demonstrates particular thermal and mechanical characteristics, in which the latter is influenced by temperature and strain rate. Molecular dynamic simulations were used to obtain thermal conductivities, glass transition temperatures (), and tensile deformation. Thermal conductivities were calculated by applying the Green-Kubo method, and a decrease in thermal conductivity was observed with increasing temperature. Density-temperature relations were used to calculate , which indicates the transition from the glassy to the rubbery state of the material, and this temperature influences mechanical properties. Investigation of the mechanical properties under uniaxial tensile deformation for constant strain rates indicates an increase in the stiffness and strength of the material at lower temperatures, while increasing molecular mobility at higher temperatures results in reducing these properties. The influence of strain rates at constant temperature highlighted the viscoelastic nature of the structure; increasing strain rates resulted in increases in stiffness, strength, elongation at maximum strength, and elongation at break because of restricted molecular relaxation time. The united-atom force field contributes to higher computational efficiency, which is suitable for large-scale simulations. These results provide important information on the thermo-mechanical properties and tunability of cis-1,4-polyisoprene, which supports applications in the production of interactive fiber rubber composites.

摘要

顺式 -1,4 -聚异戊二烯是一种广泛使用的弹性体,具有特殊的热学和力学特性,其中后者受温度和应变率影响。分子动力学模拟用于获得热导率、玻璃化转变温度()和拉伸变形。热导率通过格林 - 库博方法计算得出,且观察到热导率随温度升高而降低。利用密度 - 温度关系来计算,其表明材料从玻璃态到橡胶态的转变,并且该温度会影响力学性能。在恒定应变率下对单轴拉伸变形时力学性能的研究表明,在较低温度下材料的刚度和强度增加,而在较高温度下分子迁移率增加导致这些性能降低。在恒定温度下应变率的影响突出了结构的粘弹性本质;由于分子弛豫时间受限,应变率增加导致刚度、强度、最大强度下的伸长率和断裂伸长率增加。联合原子力场有助于提高计算效率,适用于大规模模拟。这些结果提供了关于顺式 -1,4 -聚异戊二烯热机械性能和可调性的重要信息,这为其在交互式纤维橡胶复合材料生产中的应用提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c21d/12073741/9bfbabda709b/polymers-17-01179-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验