Xu Yang, Chu Kainian, Li Zhiqiang, Xu Shikai, Yao Ge, Niu Ping, Zheng Fangcai
Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China.
Dalton Trans. 2020 Aug 25;49(33):11597-11604. doi: 10.1039/d0dt02493g.
Though carbon matrices could effectively improve the electrical conductivity and accommodate the volume expansion of CuO-based anode materials for lithium ion batteries (LIBs), achieving an optimized utilization ratio of the active CuO component remains a big challenge. In this work, we developed a metal-organic framework (MOF)-derived strategy to synthesize ultrafine CuO nanoparticles embedded in a porous carbon matrix (CuO@C). Benefiting from its unique structure, the resulting CuO@C exhibits a high reversible capacity of 1024 mA h g-1 at 100 mA g-1 after 100 cycles and a long-term cycling stability with a reversible capacity of 613 mA h g-1 at 500 mA g-1 over 700 cycles. The outstanding Li-storage performances can be attributed to its porous carbon matrix and ultrafine CuO nanoparticles with more exposed active sites for electrochemical reactions.
尽管碳基体可以有效提高锂离子电池(LIBs)中基于CuO的负极材料的电导率并适应其体积膨胀,但实现活性CuO组分的最佳利用率仍然是一个巨大的挑战。在这项工作中,我们开发了一种金属有机框架(MOF)衍生策略来合成嵌入多孔碳基体(CuO@C)中的超细CuO纳米颗粒。得益于其独特的结构,所得的CuO@C在100 mA g-1下循环100次后表现出1024 mA h g-1的高可逆容量,以及在500 mA g-1下700次循环中具有613 mA h g-1可逆容量的长期循环稳定性。出色的锂存储性能可归因于其多孔碳基体和具有更多暴露于电化学反应活性位点的超细CuO纳米颗粒。