ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38862-38871. doi: 10.1021/acsami.8b11479. Epub 2018 Oct 30.
Metal selenides have caused widespread concern due to their high theoretical capacities and appropriate working potential; however, they suffer from large volume variation during cycling and low electrical conductivity, which limit their practical applications. In this article, a three-dimensional (3D) porous carbon framework embedded with homogeneous FeSe nanoparticles (3D porous FeSe/C composite) was synthesized by a facile calcined approach, following a selenized method without a template. As the uniformity of FeSe nanoparticles and 3D porous structure are beneficial to accommodate volume stress upon cycling and shorten electrons/ions transport path, associated with carbon as a buffer matrix for increasing conductivity, the 3D porous FeSe/C composite displays excellent electrochemical properties with high reversible capacities of 798.4 and 455.0 mA h g for lithium-ion batteries and sodium-ion batteries, respectively, when the current density is 100 mA g after 100 cycles. In addition, the as-prepared composite exhibits good cycling stability as compared to bare FeSe nanoparticles. Therefore, the facile synthetic strategy in the current work provides a new perspective in constructing a high-performance anode.
金属硒化物由于其高的理论容量和合适的工作电位而引起了广泛的关注;然而,它们在循环过程中存在体积变化大、电导率低的问题,这限制了它们的实际应用。在本文中,通过一种简便的煅烧方法,在没有模板的硒化方法之后,合成了一种具有均匀 FeSe 纳米颗粒的三维(3D)多孔碳骨架(3D 多孔 FeSe/C 复合材料)。由于 FeSe 纳米颗粒的均匀性和 3D 多孔结构有利于在循环过程中容纳体积应力并缩短电子/离子传输路径,同时碳作为增加导电性的缓冲基质,3D 多孔 FeSe/C 复合材料在电流密度为 100 mA g 时表现出优异的电化学性能,对于锂离子电池和钠离子电池分别具有 798.4 和 455.0 mA h g 的高可逆容量,循环 100 次后。此外,与裸 FeSe 纳米颗粒相比,所制备的复合材料表现出良好的循环稳定性。因此,本工作中的简便合成策略为构建高性能阳极提供了新的视角。