Suppr超能文献

具有增强锂存储性能的分级MoC/C纳米片复合材料的合理合成。

Rational synthesis of a hierarchical MoC/C nanosheet composite with enhanced lithium storage properties.

作者信息

Yue Xin, Cao Minglei, Wu Limeng, Chen Wei, Li Xingxing, Ma Yanan, Zhang Chuankun

机构信息

School of Sciences, Hubei University of Automotive Technology Shiyan 442002 P. R. China

出版信息

RSC Adv. 2021 Jul 22;11(41):25497-25503. doi: 10.1039/d1ra03822b. eCollection 2021 Jul 19.

Abstract

Transition metal carbides have been studied extensively as anode materials for lithium-ion batteries (LIBs), but they suffer from sluggish lithium reaction kinetics and large volume expansion. Herein, a hierarchical MoC/C nanosheet composite has been synthesized through a rational pyrolysis strategy, and evaluated as an anode material with enhanced lithium storage properties for LIBs. In the hierarchical MoC/C nanosheet composite, large numbers of MoC nanosheets with a thickness of 40-100 nm are uniformly anchored onto/into carbon nanosheet matrices. This unique hierarchical architecture can provide favorable ion and electron transport pathways and alleviate the volume change of MoC during cycling. As a consequence, the hierarchical MoC/C nanosheet composite exhibits high-performance lithium storage with a reversible capacity of up to 868.6 mA h g after 300 cycles at a current density of 0.2 A g, as well as a high rate capacity of 541.8 mA h g even at 5.0 A g. More importantly, this hierarchical composite demonstrates impressive cyclability with a capacity retention efficiency of 122.1% over 5000 successive cycles at 5.0 A g, which surpasses the cycling properties of most other MoC-based materials reported to date.

摘要

过渡金属碳化物作为锂离子电池(LIBs)的负极材料已被广泛研究,但它们存在锂反应动力学缓慢和体积膨胀大的问题。在此,通过合理的热解策略合成了一种分级MoC/C纳米片复合材料,并将其评估为一种具有增强LIBs储锂性能的负极材料。在分级MoC/C纳米片复合材料中,大量厚度为40-100nm的MoC纳米片均匀地锚定在碳纳米片基体上/内部。这种独特的分级结构可以提供良好的离子和电子传输途径,并减轻MoC在循环过程中的体积变化。因此,分级MoC/C纳米片复合材料表现出高性能的储锂性能,在0.2A g的电流密度下循环300次后可逆容量高达868.6 mA h g,甚至在5.0A g时也具有541.8 mA h g的高倍率容量。更重要的是,这种分级复合材料在5.0A g下连续5000次循环中表现出令人印象深刻的循环稳定性,容量保持效率为122.1%,超过了迄今为止报道的大多数其他基于MoC的材料的循环性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f9b/9036952/24785408d086/d1ra03822b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验