Suppr超能文献

使用 PET/CT 图像对非小细胞肺癌进行组织学亚型分类。

Histologic subtype classification of non-small cell lung cancer using PET/CT images.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.

Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.

出版信息

Eur J Nucl Med Mol Imaging. 2021 Feb;48(2):350-360. doi: 10.1007/s00259-020-04771-5. Epub 2020 Aug 10.

Abstract

PURPOSES

To evaluate the capability of PET/CT images for differentiating the histologic subtypes of non-small cell lung cancer (NSCLC) and to identify the optimal model from radiomics-based machine learning/deep learning algorithms.

METHODS

In this study, 867 patients with adenocarcinoma (ADC) and 552 patients with squamous cell carcinoma (SCC) were retrospectively analysed. A stratified random sample of 283 patients (20%) was used as the testing set (173 ADC and 110 SCC); the remaining data were used as the training set. A total of 688 features were extracted from each outlined tumour region. Ten feature selection techniques, ten machine learning (ML) models and the VGG16 deep learning (DL) algorithm were evaluated to construct an optimal classification model for the differential diagnosis of ADC and SCC. Tenfold cross-validation and grid search technique were employed to evaluate and optimize the model hyperparameters on the training dataset. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, sensitivity and specificity was used to evaluate the performance of the models on the test dataset.

RESULTS

Fifty top-ranked subset features were selected by each feature selection technique for classification. The linear discriminant analysis (LDA) (AUROC, 0.863; accuracy, 0.794) and support vector machine (SVM) (AUROC, 0.863; accuracy, 0.792) classifiers, both of which coupled with the ℓNR feature selection method, achieved optimal performance. The random forest (RF) classifier (AUROC, 0.824; accuracy, 0.775) and ℓNR feature selection method (AUROC, 0.815; accuracy, 0.764) showed excellent average performance among the classifiers and feature selection methods employed in our study, respectively. Furthermore, the VGG16 DL algorithm (AUROC, 0.903; accuracy, 0.841) outperformed all conventional machine learning methods in combination with radiomics.

CONCLUSION

Employing radiomic machine learning/deep learning algorithms could help radiologists to differentiate the histologic subtypes of NSCLC via PET/CT images.

摘要

目的

评估 PET/CT 图像区分非小细胞肺癌(NSCLC)组织学亚型的能力,并从基于放射组学的机器学习/深度学习算法中确定最佳模型。

方法

本研究回顾性分析了 867 例腺癌(ADC)患者和 552 例鳞癌(SCC)患者。采用分层随机抽样 283 例患者(20%)作为检测集(ADC 173 例,SCC 110 例);其余数据作为训练集。从每个勾画的肿瘤区域提取了 688 个特征。评估了 10 种特征选择技术、10 种机器学习(ML)模型和 VGG16 深度学习(DL)算法,以构建用于 ADC 和 SCC 鉴别诊断的最佳分类模型。采用 10 折交叉验证和网格搜索技术在训练数据集上评估和优化模型超参数。采用受试者工作特征曲线下面积(AUROC)、准确性、精度、敏感度和特异性评估模型在检测数据集上的性能。

结果

每种特征选择技术均选择了前 50 个最佳子集特征进行分类。线性判别分析(LDA)(AUROC,0.863;准确性,0.794)和支持向量机(SVM)(AUROC,0.863;准确性,0.792)分类器,均与 ℓNR 特征选择方法相结合,取得了最佳性能。随机森林(RF)分类器(AUROC,0.824;准确性,0.775)和 ℓNR 特征选择方法(AUROC,0.815;准确性,0.764)在我们研究中使用的分类器和特征选择方法中表现出优异的平均性能。此外,VGG16 DL 算法(AUROC,0.903;准确性,0.841)在结合放射组学方面优于所有传统机器学习方法。

结论

采用放射组学机器学习/深度学习算法可帮助放射科医生通过 PET/CT 图像区分 NSCLC 的组织学亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验