Suppr超能文献

用于子空间聚类的异构流形自适应融合

Adaptive Fusion of Heterogeneous Manifolds for Subspace Clustering.

作者信息

Wang Boyue, Hu Yongli, Gao Junbin, Sun Yanfeng, Ju Fujiao, Yin Baocai

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3484-3497. doi: 10.1109/TNNLS.2020.3011717. Epub 2021 Aug 3.

Abstract

Multiview clustering (MVC) has recently received great interest due to its pleasing efficacy in combining the abundant and complementary information to improve clustering performance, which overcomes the drawbacks of view limitation existed in the standard single-view clustering. However, the existing MVC methods are mostly designed for vectorial data from linear spaces and, thus, are not suitable for multiple dimensional data with intrinsic nonlinear manifold structures, e.g., videos or image sets. Some works have introduced manifolds' representation methods of data into MVC and obtained considerable improvements, but how to fuse multiple manifolds efficiently for clustering is still a challenging problem. Particularly, for heterogeneous manifolds, it is an entirely new problem. In this article, we propose to represent the complicated multiviews' data as heterogeneous manifolds and a fusion framework of heterogeneous manifolds for clustering. Different from the empirical weighting methods, an adaptive fusion strategy is designed to weight the importance of different manifolds in a data-driven manner. In addition, the low-rank representation is generalized onto the fused heterogeneous manifolds to explore the low-dimensional subspace structures embedded in data for clustering. We assessed the proposed method on several public data sets, including human action video, facial image, and traffic scenario video. The experimental results show that our method obviously outperforms a number of state-of-the-art clustering methods.

摘要

多视图聚类(MVC)由于在结合丰富且互补的信息以提高聚类性能方面具有良好的效果,近来受到了广泛关注。它克服了标准单视图聚类中存在的视图局限性缺点。然而,现有的MVC方法大多是为线性空间中的矢量数据设计的,因此不适用于具有内在非线性流形结构的多维数据,例如视频或图像集。一些工作已将数据的流形表示方法引入到MVC中并取得了显著改进,但如何有效地融合多个流形进行聚类仍然是一个具有挑战性的问题。特别是对于异构流形,这是一个全新的问题。在本文中,我们提出将复杂的多视图数据表示为异构流形,并提出一种用于聚类的异构流形融合框架。与经验加权方法不同,我们设计了一种自适应融合策略,以数据驱动的方式权衡不同流形的重要性。此外,将低秩表示推广到融合后的异构流形上,以探索嵌入在数据中的低维子空间结构用于聚类。我们在包括人类动作视频、面部图像和交通场景视频在内的几个公共数据集上评估了所提出的方法。实验结果表明,我们的方法明显优于许多现有的聚类方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验