Suppr超能文献

使用混合萤火虫和粒子群优化算法的最优潮流。

Optimal power flow using hybrid firefly and particle swarm optimization algorithm.

机构信息

Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Selangor, Malaysia.

Advanced Lightning, Power and Energy Research (ALPER), Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia.

出版信息

PLoS One. 2020 Aug 10;15(8):e0235668. doi: 10.1371/journal.pone.0235668. eCollection 2020.

Abstract

In this paper, a novel, effective meta-heuristic, population-based Hybrid Firefly Particle Swarm Optimization (HFPSO) algorithm is applied to solve different non-linear and convex optimal power flow (OPF) problems. The HFPSO algorithm is a hybridization of the Firefly Optimization (FFO) and the Particle Swarm Optimization (PSO) technique, to enhance the exploration, exploitation strategies, and to speed up the convergence rate. In this work, five objective functions of OPF problems are studied to prove the strength of the proposed method: total generation cost minimization, voltage profile improvement, voltage stability enhancement, the transmission lines active power loss reductions, and the transmission lines reactive power loss reductions. The particular fitness function is chosen as a single objective based on control parameters. The proposed HFPSO technique is coded using MATLAB software and its effectiveness is tested on the standard IEEE 30-bus test system. The obtained results of the proposed algorithm are compared to simulated results of the original Particle Swarm Optimization (PSO) method and the present state-of-the-art optimization techniques. The comparison of optimum solutions reveals that the recommended method can generate optimum, feasible, global solutions with fast convergence and can also deal with the challenges and complexities of various OPF problems.

摘要

在本文中,应用了一种新颖有效的基于群体的混合萤火虫粒子群优化(HFPSO)算法来解决不同的非线性和凸最优潮流(OPF)问题。HFPSO 算法是萤火虫优化(FFO)和粒子群优化(PSO)技术的混合,以增强探索、开发策略,并加快收敛速度。在这项工作中,研究了 OPF 问题的五个目标函数,以证明所提出方法的优势:总发电成本最小化、电压分布改善、电压稳定性增强、传输线有功功率损耗降低以及传输线无功功率损耗降低。特定的适应度函数被选为基于控制参数的单一目标。使用 MATLAB 软件对所提出的 HFPSO 技术进行编码,并在标准 IEEE 30 母线测试系统上进行了有效性测试。将所提出算法的结果与原始粒子群优化(PSO)方法和最新的优化技术的模拟结果进行比较。最优解的比较表明,建议的方法可以生成最优、可行、全局解,并且具有快速收敛性,还可以处理各种 OPF 问题的挑战和复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验