Suppr超能文献

德国国家健康调查中的无应答问题:基于交叉性视角的个体异质性和歧视准确性的多层次分析。

Non-response in a national health survey in Germany: An intersectionality-informed multilevel analysis of individual heterogeneity and discriminatory accuracy.

机构信息

Institute of Social Medicine and Epidemiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany.

Department of Social Epidemiology, Institute of Public Health and Nursing Research, University of Bremen, Bremen, Germany.

出版信息

PLoS One. 2020 Aug 10;15(8):e0237349. doi: 10.1371/journal.pone.0237349. eCollection 2020.

Abstract

BACKGROUND

Dimensions of social location such as socioeconomic position or sex/gender are often associated with low response rates in epidemiological studies. We applied an intersectionality-informed approach to analyze non-response among population strata defined by combinations of multiple dimensions of social location and subjective health in a health survey in Germany.

METHODS

We used data from the cross-sectional sample of the German Health Interview and Examination Survey for Adults (DEGS1) conducted between 2008 and 2011. Information about non-responders was available from a mailed non-responder questionnaire. Intersectional strata were constructed by combining all categories of age, sex/gender, marital status, and level of education in scenario 1. Subjective health was additionally used to construct intersectional strata in scenario 2. We applied multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) to calculate measures of discriminatory accuracy, proportions of non-responders among intersectional strata, as well as stratum-specific total interaction effects (intersectional effects). Markov chain Monte Carlo methods were used to estimate multilevel logistic regression models.

RESULTS

Data was available for 6,534 individuals of whom 36% were non-responders. In scenario 2, we found weak discriminatory accuracy (variance partition coefficient = 3.6%) of intersectional strata, while predicted proportions of non-response ranged from 20.6% (95% credible interval (CI) 17.0%-24.9%) to 57.5% (95% CI 48.8%-66.5%) among intersectional strata. No evidence for intersectional effects was found. These results did not differ substantially between scenarios 1 and 2.

CONCLUSIONS

MAIHDA revealed that proportions of non-response varied widely between intersectional strata. However, poor discriminatory accuracy of intersectional strata and no evidence for intersectional effects indicate that there is no justification to exclusively target specific intersectional strata in order to increase response, but that a combination of targeted and population-based measures might be appropriate to achieve more equal representation.

摘要

背景

社会地位的各个维度,如社会经济地位或性别/性别,通常与流行病学研究中的低应答率有关。我们应用交叉性视角的方法,分析了德国一项健康调查中,由多个社会地位维度和主观健康组合定义的人群层的非应答情况。

方法

我们使用了 2008 年至 2011 年期间进行的德国健康访谈和体检调查(DEGS1)的横断面样本数据。关于未应答者的信息可从邮寄的未应答者问卷中获得。在方案 1 中,通过组合所有年龄、性别/性别、婚姻状况和教育水平的类别来构建交叉层。在方案 2 中,还使用主观健康来构建交叉层。我们应用个体异质性和判别准确性的多层次分析(MAIHDA)来计算判别准确性的指标、交叉层之间的未应答者比例,以及特定于层的总交互效应(交叉效应)。马尔可夫链蒙特卡罗方法用于估计多层次逻辑回归模型。

结果

共获得 6534 名个体的数据,其中 36%为未应答者。在方案 2 中,我们发现交叉层的判别准确性较弱(方差分解系数=3.6%),而预测的未应答比例在交叉层之间的范围从 20.6%(95%可信区间[CI] 17.0%-24.9%)到 57.5%(95% CI 48.8%-66.5%)。未发现交叉效应的证据。这些结果在方案 1 和 2 之间没有显著差异。

结论

MAIHDA 显示,未应答比例在交叉层之间差异很大。然而,交叉层的判别准确性较差,且没有交叉效应的证据表明,没有理由专门针对特定的交叉层来提高应答率,而是可能需要结合有针对性和基于人群的措施,以实现更平等的代表性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4582/7416954/8166f98bd742/pone.0237349.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验