Suppr超能文献

污水污泥的水热液化;中试规模处理过程中能量考虑因素和微量污染物的归宿。

Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing.

机构信息

WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus, 8000, Denmark; Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus, 8200, Denmark.

WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus, 8000, Denmark; Department of Environmental Sciences, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.

出版信息

Water Res. 2020 Sep 15;183:116101. doi: 10.1016/j.watres.2020.116101. Epub 2020 Jun 24.

Abstract

The beneficial use of sewage sludge for valorization of carbon and nutrients is of increasing interest while micropollutants in sludge are of concern to the environment and human health. This study investigates the hydrothermal liquefaction (HTL) of sewage sludge in a continuous flow pilot scale reactor at conditions expected to reflect future industrial installations. The processing is evaluated in terms of energy efficiency, bio-crude yields and quality. The raw sludge and post-HTL process water and solid residues were analyzed extensively for micropollutants via HPLC-MS/MS for target pharmaceuticals including antibiotics, blood pressure medicine, antidepressants, analgesics, x-ray contrast media, angiotensin II receptor blockers, immunosuppressant drugs and biocides including triazines, triazoles, carbamates, a carboxamide, an organophosphate and a cationic surfactant. The results show that a positive energy return on investment was achieved for all three HTL processing temperatures of 300, 325 and 350 °C with the most beneficial temperature identified as 325 °C. The analysis of the HTL by-products, process water and solids, indicates that HTL is indeed a suitable technology for the destruction of micropollutants. However, due to the large matrix effect of the HTL process water it can only be stated with certainty that 9 out of 30 pharmaceuticals and 5 out of 7 biocides products were destroyed successfully (over 98% removal). One compound, the antidepressant citalopram, was shown to be moderately recalcitrant at 300 °C with 87% removal and was only destroyed at temperatures ≥325 °C (>99% removal). Overall, the results suggest that HTL is a suitable technology for energy efficient and value added sewage sludge treatment enabling destruction of micropollutants.

摘要

污水污泥的有益利用对于实现碳和营养物质的增值越来越受到关注,而污泥中的微量污染物则对环境和人类健康构成了威胁。本研究在连续流动中试规模反应器中考察了污水污泥的水热液化(HTL)条件,这些条件预计将反映未来的工业装置。从能源效率、生物原油产率和质量等方面评估了处理过程。通过 HPLC-MS/MS 对原污泥和 HTL 后工艺水和固体残渣中的微量污染物进行了广泛分析,目标药物包括抗生素、降压药、抗抑郁药、镇痛药、X 射线造影剂、血管紧张素 II 受体阻滞剂、免疫抑制剂和杀生物剂,包括三嗪、三唑、氨基甲酸酯、羧酰胺、有机磷和阳离子表面活性剂。结果表明,对于 300、325 和 350°C 三种 HTL 处理温度,都实现了正投资回报,最有利的温度确定为 325°C。HTL 副产物、工艺水和固体的分析表明,HTL 确实是一种适合于破坏微量污染物的技术。然而,由于 HTL 工艺水的基质效应较大,只能肯定地说 30 种药物中有 9 种和 7 种杀生物剂中有 5 种被成功破坏(去除率超过 98%)。一种名为西酞普兰的抗抑郁药在 300°C 时表现出中等程度的难降解性,去除率为 87%,只有在温度≥325°C 时才被完全破坏(去除率>99%)。总体而言,研究结果表明,HTL 是一种适合于实现污水污泥高效节能和增值处理的技术,能够破坏微量污染物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验