Suppr超能文献

骨科磨损颗粒引起溶酶体破坏,通过不同的机制诱导 NLRP3 炎性小体激活和巨噬细胞死亡。

Lysosomal disruption by orthopedic wear particles induces activation of the NLRP3 inflammasome and macrophage cell death by distinct mechanisms.

机构信息

Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.

Department of Physiology and Biophysics, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.

出版信息

J Orthop Res. 2021 Mar;39(3):493-505. doi: 10.1002/jor.24826. Epub 2020 Aug 22.

Abstract

Wear particles from orthopedic implants cause aseptic loosening, the leading cause of implant revisions. The particles are phagocytosed by macrophages leading to activation of the nod-like receptor protein 3 (NLRP3) inflammasome and release of interleukin-1β (IL-1β) which then contributes to osteoclast differentiation and implant loosening. The mechanism of inflammasome activation by orthopedic particles is undetermined but other particles cause the cytosolic accumulation of the lysosomal cathepsin-family proteases which can activate the NLRP3 inflammasome. Here, we demonstrate that lysosome membrane disruption causes cathepsin release into the cytoplasm that drives both inflammasome activation and cell death but that these processes occur independently. Using wild-type and genetically-manipulated immortalized murine bone marrow derived macrophages and pharmacologic inhibitors, we found that NLRP3 and gasdermin D are required for particle-induced IL-1β release but not for particle-induced cell death. In contrast, phagocytosis and lysosomal cathepsin release are critical for both IL-1β release and cell death. Collectively, our findings identify the pan-cathepsin inhibitor Ca-074Me and the NLRP3 inflammasome inhibitor MCC950 as therapeutic interventions worth exploring in aseptic loosening of orthopedic implants. We also found that particle-induced activation of the NLRP3 inflammasome in pre-primed macrophages and cell death are not dependent on pathogen-associated molecular patterns adherent to the wear particles despite such pathogen-associated molecular patterns being critical for all other previously studied wear particle responses, including priming of the NLRP3 inflammasome.

摘要

骨科植入物的磨损颗粒会导致无菌性松动,这是植入物翻修的主要原因。这些颗粒被巨噬细胞吞噬,导致核苷酸结合寡聚化结构域样受体 3(NLRP3)炎性小体的激活,并释放白细胞介素-1β(IL-1β),进而促进破骨细胞分化和植入物松动。骨科颗粒引起炎性小体激活的机制尚不清楚,但其他颗粒会导致溶酶体天冬氨酸蛋白水解酶家族蛋白酶在细胞质中的积累,从而激活 NLRP3 炎性小体。在这里,我们证明溶酶体膜的破坏会导致组织蛋白酶释放到细胞质中,从而驱动炎性小体的激活和细胞死亡,但这些过程是独立发生的。使用野生型和基因改造的永生化鼠骨髓来源的巨噬细胞和药理抑制剂,我们发现 NLRP3 和 gasdermin D 是颗粒诱导的 IL-1β释放所必需的,但不是颗粒诱导的细胞死亡所必需的。相比之下,吞噬作用和溶酶体组织蛋白酶的释放对 IL-1β释放和细胞死亡都是至关重要的。总的来说,我们的研究结果确定了泛组织蛋白酶抑制剂 Ca-074Me 和 NLRP3 炎性小体抑制剂 MCC950 作为治疗干预措施,值得在骨科植入物的无菌性松动中进行探索。我们还发现,尽管病原体相关分子模式对于所有其他先前研究的磨损颗粒反应(包括 NLRP3 炎性小体的预刺激)都是至关重要的,但颗粒诱导的预先刺激的巨噬细胞中的 NLRP3 炎性小体的激活和细胞死亡与附着在磨损颗粒上的病原体相关分子模式无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef3/8201664/03fb6b7a088e/nihms-1692956-f0001.jpg

相似文献

引用本文的文献

2
Roles of inflammatory cell infiltrate in periprosthetic osteolysis.炎性细胞浸润在假体周围骨溶解中的作用。
Front Immunol. 2023 Dec 1;14:1310262. doi: 10.3389/fimmu.2023.1310262. eCollection 2023.
5
Effects of NLRP3 on implants placement.NLRP3 对种植体植入的影响。
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023 Feb 25;52(1):126-133. doi: 10.3724/zdxbyxb-2022-0614.
6
NLRP3 inflammasome activation in response to metals.NLRP3 炎性小体对金属的反应激活。
Front Immunol. 2023 Feb 10;14:1055788. doi: 10.3389/fimmu.2023.1055788. eCollection 2023.
7
Macrophages and Bone Remodeling.巨噬细胞与骨重建。
J Bone Miner Res. 2023 Mar;38(3):359-369. doi: 10.1002/jbmr.4773. Epub 2023 Feb 3.

本文引用的文献

2
Knocking 'em Dead: Pore-Forming Proteins in Immune Defense.《一击必杀:免疫防御中的成孔蛋白》
Annu Rev Immunol. 2020 Apr 26;38:455-485. doi: 10.1146/annurev-immunol-111319-023800. Epub 2020 Jan 31.
5
The molecular machinery of regulated cell death.调控细胞死亡的分子机制。
Cell Res. 2019 May;29(5):347-364. doi: 10.1038/s41422-019-0164-5. Epub 2019 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验