Suppr超能文献

腕部穿戴式反射式光容积描记法监测睡眠呼吸障碍:呼吸暂停低通气指数的估计。

Wearable monitoring of sleep-disordered breathing: estimation of the apnea-hypopnea index using wrist-worn reflective photoplethysmography.

机构信息

Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands.

Philips Research, High Tech Campus, 5656 AE, Eindhoven, The Netherlands.

出版信息

Sci Rep. 2020 Aug 11;10(1):13512. doi: 10.1038/s41598-020-69935-7.

Abstract

A large part of the worldwide population suffers from obstructive sleep apnea (OSA), a disorder impairing the restorative function of sleep and constituting a risk factor for several cardiovascular pathologies. The standard diagnostic metric to define OSA is the apnea-hypopnea index (AHI), typically obtained by manually annotating polysomnographic recordings. However, this clinical procedure cannot be employed for screening and for long-term monitoring of OSA due to its obtrusiveness and cost. Here, we propose an automatic unobtrusive AHI estimation method fully based on wrist-worn reflective photoplethysmography (rPPG), employing a deep learning model exploiting cardiorespiratory and sleep information extracted from the rPPG signal trained with 250 recordings. We tested our method with an independent set of 188 heterogeneously disordered clinical recordings and we found it estimates the AHI with a good agreement to the gold standard polysomnography reference (correlation = 0.61, estimation error = 3±10 events/h). The estimated AHI was shown to reliably assess OSA severity (weighted Cohen's kappa = 0.51) and screen for OSA (ROC-AUC = 0.84/0.86/0.85 for mild/moderate/severe OSA). These findings suggest that wrist-worn rPPG measurements that can be implemented in wearables such as smartwatches, have the potential to complement standard OSA diagnostic techniques by allowing unobtrusive sleep and respiratory monitoring.

摘要

全球很大一部分人口患有阻塞性睡眠呼吸暂停(OSA),这是一种扰乱睡眠恢复功能的疾病,也是几种心血管病理的风险因素。定义 OSA 的标准诊断指标是呼吸暂停低通气指数(AHI),通常通过手动注释多导睡眠图记录来获得。然而,由于这种临床程序的干扰性和成本,它不能用于 OSA 的筛查和长期监测。在这里,我们提出了一种完全基于腕戴反射光体积描记法(rPPG)的自动非侵入性 AHI 估计方法,该方法使用了一种深度学习模型,该模型利用从 rPPG 信号中提取的心呼吸和睡眠信息进行训练,该信号来自 250 个记录。我们使用一组 188 个异质紊乱的临床记录进行了独立测试,发现该方法与金标准多导睡眠图参考(相关性=0.61,估计误差=3±10 事件/小时)具有很好的一致性。估计的 AHI 被证明能够可靠地评估 OSA 严重程度(加权 Cohen's kappa = 0.51)和筛查 OSA(轻度/中度/重度 OSA 的 ROC-AUC = 0.84/0.86/0.85)。这些发现表明,腕戴 rPPG 测量可以通过允许非侵入性睡眠和呼吸监测,有潜力补充标准 OSA 诊断技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5c/7421543/8fac7b17a7ce/41598_2020_69935_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验