Suppr超能文献

利用多传感器消费级可穿戴设备的心率和运动数据检测睡眠,与腕部活动记录仪和多导睡眠图相比。

Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography.

机构信息

Sonic Sleep Coach, New York City, NY.

Department of Biobehavioral Health, Pennsylvania State University, University Park, PA.

出版信息

Sleep. 2020 Jul 13;43(7). doi: 10.1093/sleep/zsaa045.

Abstract

STUDY OBJECTIVES

Multisensor wearable consumer devices allowing the collection of multiple data sources, such as heart rate and motion, for the evaluation of sleep in the home environment, are increasingly ubiquitous. However, the validity of such devices for sleep assessment has not been directly compared to alternatives such as wrist actigraphy or polysomnography (PSG).

METHODS

Eight participants each completed four nights in a sleep laboratory, equipped with PSG and several wearable devices. Registered polysomnographic technologist-scored PSG served as ground truth for sleep-wake state. Wearable devices providing sleep-wake classification data were compared to PSG at both an epoch-by-epoch and night level. Data from multisensor wearables (Apple Watch and Oura Ring) were compared to data available from electrocardiography and a triaxial wrist actigraph to evaluate the quality and utility of heart rate and motion data. Machine learning methods were used to train and test sleep-wake classifiers, using data from consumer wearables. The quality of classifications derived from devices was compared.

RESULTS

For epoch-by-epoch sleep-wake performance, research devices ranged in d' between 1.771 and 1.874, with sensitivity between 0.912 and 0.982, and specificity between 0.366 and 0.647. Data from multisensor wearables were strongly correlated at an epoch-by-epoch level with reference data sources. Classifiers developed from the multisensor wearable data ranged in d' between 1.827 and 2.347, with sensitivity between 0.883 and 0.977, and specificity between 0.407 and 0.821.

CONCLUSIONS

Data from multisensor consumer wearables are strongly correlated with reference devices at the epoch level and can be used to develop epoch-by-epoch models of sleep-wake rivaling existing research devices.

摘要

研究目的

越来越多的多传感器可穿戴消费设备可以收集多种数据源,如心率和运动,用于评估家庭环境中的睡眠,这些设备的应用也越来越广泛。然而,这些设备在评估睡眠方面的有效性尚未与腕部动作记录仪或多导睡眠图(PSG)等替代方法进行直接比较。

方法

八名参与者每人在睡眠实验室完成了四晚的睡眠,该实验室配备了 PSG 和几种可穿戴设备。经过注册的多导睡眠技师评分的 PSG 被用作睡眠-觉醒状态的金标准。可穿戴设备提供的睡眠-觉醒分类数据与 PSG 在逐epoch 和夜间水平上进行了比较。多传感器可穿戴设备(Apple Watch 和 Oura Ring)的数据与心电图和三轴腕部动作记录仪的数据进行了比较,以评估心率和运动数据的质量和实用性。使用来自消费者可穿戴设备的数据,机器学习方法被用于训练和测试睡眠-觉醒分类器。比较了从设备中得出的分类质量。

结果

在逐epoch 的睡眠-觉醒表现方面,研究设备的 d'值在 1.771 到 1.874 之间,敏感性在 0.912 到 0.982 之间,特异性在 0.366 到 0.647 之间。多传感器可穿戴设备的数据与参考数据源在逐 epoch 水平上具有很强的相关性。从多传感器可穿戴设备数据中开发的分类器的 d'值在 1.827 到 2.347 之间,敏感性在 0.883 到 0.977 之间,特异性在 0.407 到 0.821 之间。

结论

多传感器消费可穿戴设备的数据与参考设备在逐 epoch 水平上具有很强的相关性,可用于开发与现有研究设备相媲美的逐 epoch 睡眠-觉醒模型。

相似文献

7
AI-Driven sleep staging from actigraphy and heart rate.基于动作和心率的人工智能睡眠分期。
PLoS One. 2023 May 17;18(5):e0285703. doi: 10.1371/journal.pone.0285703. eCollection 2023.

引用本文的文献

本文引用的文献

3
The economic cost of inadequate sleep.睡眠不足的经济成本。
Sleep. 2018 Aug 1;41(8). doi: 10.1093/sleep/zsy083.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验