Mukhopadhyay Sourav Kumar, Zara Michael, Telias Irene, Chen Lu, Coudroy Remi, Yoshida Takeshi, Brochard Laurent, Krishnan Sridhar
Department of Electrical, Computer, and Biomedical EngineeringRyerson UniversityTorontoONM5B 2K3Canada.
Institute for Biomedical Engineering, Science, and Technology (iBEST), Ryerson UniversityTorontoONM5B 2K3Canada.
IEEE J Transl Eng Health Med. 2020 Jul 30;8:3300211. doi: 10.1109/JTEHM.2020.3012926. eCollection 2020.
Assessing the respiratory and lung mechanics of the patients in intensive care units is of utmost need in order to guide the management of ventilation support. The esophageal pressure ([Formula: see text]) signal is a minimally invasive measure, which portrays the mechanics of the lung and the pattern of breathing. Because of the close proximity of the lung to the beating heart inside the thoracic cavity, the [Formula: see text] signals always get contaminated with that of the oscillatory-pressure-signal of the heart, which is known as the cardiogenic oscillation ([Formula: see text]) signal. However, the area of research addressing the removal of [Formula: see text] from [Formula: see text] signal is still lagging behind. This paper presents a singular spectrum analysis-based high-efficient, adaptive and robust technique for the removal of [Formula: see text] from [Formula: see text] signal utilizing the inherent periodicity and morphological property of the [Formula: see text] signal. The performance of the proposed technique is tested on [Formula: see text] signals collected from the patients admitted to the intensive care unit, cadavers, and also on synthetic [Formula: see text] signals. The efficiency of the proposed technique in removing [Formula: see text] from the [Formula: see text] signal is quantified through both qualitative and quantitative measures, and the mean opinion scores of the denoised [Formula: see text] signal fall under the categories 'very good' as per the subjective measure. The proposed technique: (1) does not follow any predefined mathematical model and hence, it is data-driven, (2) is adaptive to the sampling rate, and (3) can be adapted for denoising other biomedical signals which exhibit periodic or quasi-periodic nature.
为了指导通气支持的管理,评估重症监护病房患者的呼吸和肺力学至关重要。食管压力([公式:见原文])信号是一种微创测量方法,它描绘了肺的力学和呼吸模式。由于肺与胸腔内跳动的心脏距离很近,[公式:见原文]信号总是被心脏的振荡压力信号(即心源性振荡([公式:见原文])信号)污染。然而,从[公式:见原文]信号中去除[公式:见原文]的研究领域仍相对滞后。本文提出了一种基于奇异谱分析的高效、自适应且稳健的技术,利用[公式:见原文]信号的固有周期性和形态特性从[公式:见原文]信号中去除[公式:见原文]。所提出技术的性能在从重症监护病房收治的患者、尸体采集的[公式:见原文]信号以及合成[公式:见原文]信号上进行了测试。通过定性和定量措施对所提出技术从[公式:见原文]信号中去除[公式:见原文]的效率进行了量化,并且根据主观测量,去噪后的[公式:见原文]信号的平均意见得分属于“非常好”类别。所提出的技术:(1)不遵循任何预定义的数学模型,因此是数据驱动的;(2)能适应采样率;(3)可适用于对其他具有周期性或准周期性的生物医学信号进行去噪。