Suppr超能文献

BSD-GAN:用于尺度解缠表示学习和图像合成的分支生成对抗网络。

BSD-GAN: Branched Generative Adversarial Network for Scale-Disentangled Representation Learning and Image Synthesis.

作者信息

Yi Zili, Chen Zhiqin, Cai Hao, Mao Wendong, Gong Minglun, Zhang Hao

出版信息

IEEE Trans Image Process. 2020 Aug 12;PP. doi: 10.1109/TIP.2020.3014608.

Abstract

We introduce BSD-GAN, a novel multi-branch and scale-disentangled training method which enables unconditional Generative Adversarial Networks (GANs) to learn image representations at multiple scales, benefiting a wide range of generation and editing tasks. The key feature of BSD-GAN is that it is trained in multiple branches, progressively covering both the breadth and depth of the network, as resolutions of the training images increase to reveal finer-scale features. Specifically, each noise vector, as input to the generator network of BSD-GAN, is deliberately split into several sub-vectors, each corresponding to, and is trained to learn, image representations at a particular scale. During training, we progressively "de-freeze" the sub-vectors, one at a time, as a new set of higher-resolution images is employed for training and more network layers are added. A consequence of such an explicit sub-vector designation is that we can directly manipulate and even combine latent (sub-vector) codes which model different feature scales. Extensive experiments demonstrate the effectiveness of our training method in scale-disentangled learning of image representations and synthesis of novel image contents, without any extra labels and without compromising quality of the synthesized high-resolution images. We further demonstrate several image generation and manipulation applications enabled or improved by BSD-GAN.

摘要

我们提出了BSD-GAN,这是一种新颖的多分支和尺度解缠训练方法,它使无条件生成对抗网络(GAN)能够在多个尺度上学习图像表示,从而有利于广泛的生成和编辑任务。BSD-GAN的关键特性在于它在多个分支中进行训练,随着训练图像分辨率的提高以揭示更精细尺度的特征,逐步覆盖网络的广度和深度。具体而言,作为BSD-GAN生成器网络输入的每个噪声向量被有意地拆分为几个子向量,每个子向量对应于特定尺度的图像表示并被训练以学习该表示。在训练期间,随着一组新的更高分辨率图像用于训练并添加更多网络层,我们一次逐步“解冻”一个子向量。这种明确的子向量指定的一个结果是,我们可以直接操纵甚至组合对不同特征尺度进行建模的潜在(子向量)代码。大量实验证明了我们的训练方法在图像表示的尺度解缠学习和新图像内容合成方面的有效性,无需任何额外标签且不影响合成高分辨率图像的质量。我们进一步展示了由BSD-GAN实现或改进的几个图像生成和操纵应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验