School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
Sensors (Basel). 2022 Feb 13;22(4):1435. doi: 10.3390/s22041435.
The generative adversarial network (GAN) has demonstrated superb performance in generating synthetic images in recent studies. However, in the conventional framework of GAN, the maximum resolution of generated images is limited to the resolution of real images that are used as the training set. In this paper, in order to address this limitation, we propose a novel GAN framework using a pre-trained network called evaluator. The proposed model, higher resolution GAN (HRGAN), employs additional up-sampling convolutional layers to generate higher resolution. Then, using the evaluator, an additional target for the training of the generator is introduced to calibrate the generated images to have realistic features. In experiments with the CIFAR-10 and CIFAR-100 datasets, HRGAN successfully generates images of 64 × 64 and 128 × 128 resolutions, while the training sets consist of images of 32 × 32 resolution. In addition, HRGAN outperforms other existing models in terms of the Inception score, one of the conventional methods to evaluate GANs. For instance, in the experiment with CIFAR-10, a HRGAN generating 128 × 128 resolution demonstrates an Inception score of 12.32, outperforming an existing model by 28.6%. Thus, the proposed HRGAN demonstrates the possibility of generating higher resolution than training images.
生成对抗网络(GAN)在最近的研究中在生成合成图像方面表现出了卓越的性能。然而,在 GAN 的传统框架中,生成图像的最大分辨率限制为用作训练集的真实图像的分辨率。在本文中,为了解决这一限制,我们提出了一种使用称为评估器的预训练网络的新型 GAN 框架。所提出的模型,高分辨率 GAN(HRGAN),使用额外的上采样卷积层来生成更高的分辨率。然后,使用评估器,为生成器的训练引入了额外的目标,以校准生成的图像具有逼真的特征。在 CIFAR-10 和 CIFAR-100 数据集的实验中,HRGAN 成功地生成了 64×64 和 128×128 分辨率的图像,而训练集由 32×32 分辨率的图像组成。此外,HRGAN 在 Inception 分数方面优于其他现有模型,Inception 分数是评估 GAN 的传统方法之一。例如,在 CIFAR-10 的实验中,生成 128×128 分辨率的 HRGAN 的 Inception 分数为 12.32,比现有模型高出 28.6%。因此,所提出的 HRGAN 展示了生成高于训练图像分辨率的可能性。