Suppr超能文献

基于便携式可见/近红外光谱仪,运用多种预处理技术的偏最小二乘回归(PLSR)和支持向量机回归(SVM-R)对硬枣猕猴桃可溶性固形物含量进行定量测定的比较研究

A Comparative Study of PLSR and SVM-R with Various Preprocessing Techniques for the Quantitative Determination of Soluble Solids Content of Hardy Kiwi Fruit by a Portable Vis/NIR Spectrometer.

作者信息

Sarkar Shagor, Basak Jayanta Kumar, Moon Byeong Eun, Kim Hyeon Tae

机构信息

Department of Bio-Systems Engineering, Gyeongsang National University (Institute of Smart Farm), Jinju 52828, Korea.

出版信息

Foods. 2020 Aug 7;9(8):1078. doi: 10.3390/foods9081078.

Abstract

Linear partial least square and non-linear support vector machine regression analysis with various preprocessing techniques and their combinations were used to determine the soluble solids content of hardy kiwi fruits by a handheld, portable near-infrared spectroscopy. Fruits of four species, namely Autumn sense (A), Chungsan (C), Daesung (D), and Green ball (Gb) were collected from five different areas of Gwangyang (G), Muju (M), Suwon (S), Wonju (Q), and Yeongwol (Y) in South Korea. The dataset for calibration and prediction was prepared based on each area, species, and in combination. Half of the dataset of each area, species, and combined dataset was used as calibrated data and the rest was used for model validation. The best prediction correlation coefficient ranges between 0.67 and 0.75, 0.61 and 0.77, and 0.68 for the area, species, combined dataset, respectively using partial least square regression (PLSR) method with different preprocessing techniques. On the other hand, the best correlation coefficient of predictions using the support vector machine regression (SVM-R) algorithm was 0.68 and 0.80, 0.62 and 0.79, and 0.74 for the area, species, and combined dataset, respectively. In most cases, the SVM-R algorithm produced better results with Autoscale preprocessing except G area and species Gb, whereas the PLS algorithm shows a significant difference in calibration and prediction models for different preprocessing techniques. Therefore, the SVM-R method was superior to the PLSR method in predicting soluble solids content of hardy kiwi fruits and non-linear models may be a better alternative to monitor soluble solids content of fruits. The finding of this research can be used as a reference for the prediction of hardy kiwi fruits soluble solids content as well as harvesting time with better prediction models.

摘要

采用线性偏最小二乘法和非线性支持向量机回归分析,并结合各种预处理技术及其组合,通过手持式便携式近红外光谱法测定了软枣猕猴桃果实的可溶性固形物含量。从韩国光阳(G)、茂朱(M)、水原(S)、原州(Q)和宁越(Y)五个不同地区收集了四个品种的果实,即秋香(A)、钟山(C)、大成(D)和绿球(Gb)。根据每个地区、品种以及两者的组合制备了校准和预测数据集。每个地区、品种和组合数据集的一半数据用作校准数据,其余数据用于模型验证。使用不同预处理技术的偏最小二乘回归(PLSR)方法,分别对地区、品种、组合数据集进行预测时,最佳预测相关系数范围分别为0.67至0.75、0.61至0.77和0.68。另一方面,使用支持向量机回归(SVM-R)算法进行预测时,地区、品种和组合数据集的最佳相关系数分别为0.68和0.80、0.62和0.79以及0.74。在大多数情况下,除了G地区和Gb品种外,SVM-R算法在自动缩放预处理下产生了更好的结果,而PLS算法在不同预处理技术的校准和预测模型中显示出显著差异。因此,在预测软枣猕猴桃果实的可溶性固形物含量方面,SVM-R方法优于PLSR方法,非线性模型可能是监测果实可溶性固形物含量的更好选择。本研究结果可为软枣猕猴桃果实可溶性固形物含量及采收时间的预测提供参考,以获得更好的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25ed/7466312/1811c9902426/foods-09-01078-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验