Suppr超能文献

管状到带状的转变在自组装模型肽系统中。

Tube to ribbon transition in a self-assembling model peptide system.

机构信息

Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.

出版信息

Phys Chem Chem Phys. 2020 Sep 7;22(33):18320-18327. doi: 10.1039/d0cp03204b. Epub 2020 Aug 12.

Abstract

Peptides that self-assemble into β-sheet rich aggregates are known to form a large variety of supramolecular shapes, such as ribbons, tubes or sheets. However, the underlying thermodynamic driving forces for such different structures are still not fully understood, limiting their potential applications. In the AK peptide system (A = alanine, K = lysine), a structural transition from tubes to ribbons has been shown to occur upon an increase of the peptide length, n, from 6 to 8. In this work we analyze this transition by means of a simple thermodynamic model. We consider three energy contributions to the total free energy: an interfacial tension, a penalty for deviating from the optimal β-sheet twist angle, and a hydrogen bond deformation when the β-sheets adopt a specific self-assembled structure. Whilst the first two contributions merely provide similar constant energy offsets, the hydrogen bond deformations differ depending on the studied structure. Consequently, the tube structure is thermodynamically favored for shorter AK peptides, with a crossover at n≈ 13. This qualitative agreement of the model with the experimental observations shows, that we have achieved a good understanding of the underlying thermodynamic features within the self-assembling AK system.

摘要

已知自组装成富含β-折叠的聚集物的肽能够形成多种超分子形状,例如带、管或片。然而,对于这种不同结构的潜在应用,其背后的热力学驱动力仍未完全理解。在 AK 肽系统(A = 丙氨酸,K = 赖氨酸)中,已经表明当肽长度 n 从 6 增加到 8 时,会发生从管到带的结构转变。在这项工作中,我们通过一个简单的热力学模型来分析这种转变。我们考虑了总自由能的三个能量贡献:界面张力、偏离最佳β-折叠扭曲角的惩罚以及β-折叠采用特定自组装结构时的氢键变形。虽然前两个贡献仅提供类似的恒定能量偏移,但氢键变形取决于所研究的结构。因此,对于较短的 AK 肽,管结构在热力学上是有利的,在 n≈13 时发生交叉。该模型与实验观察结果的定性一致表明,我们已经很好地理解了自组装 AK 系统中潜在的热力学特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验