Faculty of Biology and Pre-Clinical Medicine, Theoretical Ecology, University of Regensburg, Regensburg, Germany.
Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany.
Environ Toxicol Chem. 2020 Nov;39(11):2109-2123. doi: 10.1002/etc.4847. Epub 2020 Sep 29.
Current regulatory guidelines for pesticide risk assessment recommend that nonsignificant results should be complemented by the minimum detectable difference (MDD), a statistical indicator that is used to decide whether the experiment could have detected biologically relevant effects. We review the statistical theory of the MDD and perform simulations to understand its properties and error rates. Most importantly, we compare the skill of the MDD in distinguishing between true and false negatives (i.e., type II errors) with 2 alternatives: the minimum detectable effect (MDE), an indicator based on a post hoc power analysis common in medical studies; and confidence intervals (CIs). Our results demonstrate that MDD and MDE only differ in that the power of the MDD depends on the sample size. Moreover, although both MDD and MDE have some skill in distinguishing between false negatives and true absence of an effect, they do not perform as well as using CI upper bounds to establish trust in a nonsignificant result. The reason is that, unlike the CI, neither MDD nor MDE consider the estimated effect size in their calculation. We also show that MDD and MDE are no better than CIs in identifying larger effects among the false negatives. We conclude that, although MDDs are useful, CIs are preferable for deciding whether to treat a nonsignificant test result as a true negative, or for determining an upper bound for an unknown true effect. Environ Toxicol Chem 2020;39:2109-2123. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
当前农药风险评估的监管指南建议,对于无显著性结果,应使用最小可检测差异(MDD)进行补充,这是一种用于判断实验是否能够检测到具有生物学相关性的效应的统计指标。我们回顾了 MDD 的统计理论,并进行了模拟,以了解其性质和错误率。最重要的是,我们将 MDD 区分真实和假阴性(即第二类错误)的能力与另外两种方法进行了比较:最小可检测效应(MDE),这是一种基于事后功效分析的医学研究中常用的指标;置信区间(CI)。我们的结果表明,MDD 和 MDE 仅在 MDD 的功效取决于样本量这一点上有所不同。此外,尽管 MDD 和 MDE 在区分假阴性和真实无效应方面都具有一定的能力,但它们的表现不如使用 CI 上限来建立对无显著性结果的信任。原因是,与 CI 不同,MDD 和 MDE 都没有考虑到它们计算中的估计效应大小。我们还表明,MDD 和 MDE 在识别假阴性中的较大效应方面并不优于 CI。我们得出结论,尽管 MDD 是有用的,但在确定是否将无显著性的测试结果视为真实阴性,或确定未知真实效应的上限时,CI 更为可取。Environ Toxicol Chem 2020;39:2109-2123。©2020 作者。环境毒理化学由 Wiley Periodicals LLC 代表 SETAC 出版。