Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
Biochemistry. 2020 Sep 8;59(35):3206-3215. doi: 10.1021/acs.biochem.0c00324. Epub 2020 Aug 25.
Phototropins are photoreceptor proteins that regulate blue light-dependent biological processes for efficient photosynthesis in plants and algae. The proteins consist of a photosensory domain that responds to the ambient light and an output module that triggers cellular responses. The photosensory domain of phototropin from contains two conserved LOV (light-oxygen-voltage) domains with flavin chromophores. Blue light triggers the formation of a covalent cysteine-flavin adduct and upregulates the phototropin kinase activity. Little is known about the structural mechanism that leads to kinase activation and how the two LOV domains contribute to this. Here, we investigate the role of the LOV1 domain from phototropin by characterizing the structural changes occurring after blue light illumination with nano- to millisecond time-resolved X-ray solution scattering. By structurally fitting the data with atomic models generated by molecular dynamics simulations, we find that adduct formation induces a rearrangement of the hydrogen bond network from the buried chromophore to the protein surface. In particular, the change in conformation and the associated hydrogen bonding of the conserved glutamine 120 induce a global movement of the β-sheet, ultimately driving a change in the electrostatic potential on the protein surface. On the basis of the change in the electrostatics, we propose a structural model of how LOV1 and LOV2 domains interact and regulate the full-length phototropin from . This provides a rationale for how LOV photosensor proteins function and contributes to the optimal design of optogenetic tools based on LOV domains.
光受体蛋白(Phototropins)是一类调节蓝光依赖的生物过程的蛋白,对植物和藻类的高效光合作用至关重要。这些蛋白由感光结构域和输出模块组成,前者对环境光做出响应,后者触发细胞反应。来自 的光受体蛋白的感光结构域包含两个保守的 LOV(光氧电压)结构域,其中含有黄素发色团。蓝光会触发半胱氨酸-黄素共价加合物的形成,并上调光受体蛋白激酶的活性。然而,对于导致激酶激活的结构机制以及两个 LOV 结构域如何对此产生影响,目前我们知之甚少。在这里,我们通过纳米至毫秒时间分辨的 X 射线溶液散射技术研究了 光受体蛋白中 LOV1 结构域的作用,对蓝光照射后发生的结构变化进行了表征。通过将数据与通过分子动力学模拟生成的原子模型进行结构拟合,我们发现加合物的形成诱导了从埋藏的发色团到蛋白质表面的氢键网络的重新排列。特别是,保守的谷氨酰胺 120 的构象变化及其相关氢键的变化会导致β-折叠的整体运动,最终导致蛋白质表面的静电势发生变化。基于静电变化,我们提出了 LOV1 和 LOV2 结构域如何相互作用并调节全长光受体蛋白的结构模型。这为 LOV 光传感器蛋白的功能提供了依据,并为基于 LOV 结构域的光遗传学工具的优化设计提供了思路。