Tamshen Kyle, Wang Yue, Jamieson Stephen M F, Perry Jo K, Maynard Heather D
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States.
Liggins Institute, University of Auckland, Auckland 1203, New Zealand.
Bioconjug Chem. 2020 Sep 16;31(9):2179-2190. doi: 10.1021/acs.bioconjchem.0c00365. Epub 2020 Sep 2.
Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.
人类生长激素(GH)信号调节在包括肢端肥大症和癌症在内的多种疾病的治疗中具有重要应用。生长激素受体(GHR)拮抗剂目前是抑制GH信号的最有效手段。然而,这些22 kDa的重组工程化GH类似物在血浆中的循环时间较短。为了提高临床可行性,在FDA批准的治疗药物培维索孟中,将4至6个5 kDa的聚乙二醇(PEG)分子非特异性地连接到名为B2036的GHR拮抗剂的9个胺基上。聚乙二醇化增加了B2036的分子量并显著延长了其循环时间,但也极大地降低了其生物活性,导致给药剂量高且成本增加。作为非特异性聚乙二醇化的替代方法,我们报道了使用遗传密码扩展技术将非天然氨基酸炔丙基酪氨酸(pglY)位点特异性地掺入B2036中,目的是生产位点特异性蛋白质-聚合物缀合物。用pglY取代酪氨酸35产生了一个含有炔基官能团的B2036变体,细胞试验证实其生物活性未受影响。随后通过铜催化的点击反应将5、10和20 kDa含叠氮基的PEG进行缀合,得到了纯度高、位点特异性的缀合物,缀合效率>89%。与培维索孟相比,PEG位点特异性连接到B2036与体外生物活性值的显著提高相关,观察到聚合物大小与活性之间呈反比关系。值得注意的是,B2036-20 kDa PEG缀合物的分子量与培维索孟相当,而在表达GHR的Ba/F3细胞中,其半数最大抑制浓度提高了12.5倍(103.3 nM对1289 nM)。我们预计,这种实现位点特异性GHR拮抗剂的直接途径将有助于GH信号调节。