Talotta Francesco, Agostini Federica, Ciccotti Giovanni
Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France.
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
J Phys Chem A. 2020 Aug 27;124(34):6764-6777. doi: 10.1021/acs.jpca.0c03969. Epub 2020 Aug 17.
In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation. Those characteristics are referred to as quantum trajectories, since they are generated via ordinary differential equations similar to Hamilton's equations, but including the so-called quantum potential, and they can be used to reconstruct exactly the quantum-mechanical nuclear wave function, provided infinite initial conditions are propagated in time.
在含时电子-核波函数的精确因式分解框架下,我们研究了基于轨迹求解核含时薛定谔方程的可能性。核方程被分离为一个关于波函数相位的哈密顿-雅可比方程,以及一个关于其(平方)模的连续性方程。对于具有说明性的绝热和非绝热一维模型,我们实施了一个程序,以跟踪核密度沿哈密顿-雅可比方程特征线的演化。这些特征线被称为量子轨迹,因为它们是通过类似于哈密顿方程的常微分方程生成的,但包含所谓的量子势,并且只要无限的初始条件随时间传播,它们就可用于精确重构量子力学核波函数。