Suppr超能文献

红细胞衍生的光学纳米颗粒在冻融循环后仍保持稳定。

RBC-Derived Optical Nanoparticles Remain Stable After a Freeze-Thaw Cycle.

作者信息

Tang Jack C, Vankayala Raviraj, Mac Jenny T, Anvari Bahman

机构信息

Department of Bioengineering, University of California, Riverside, California 92521, United States.

Department of Biochemistry, University of California, Riverside, California 92521, United States.

出版信息

Langmuir. 2020 Sep 1;36(34):10003-10011. doi: 10.1021/acs.langmuir.0c00637. Epub 2020 Aug 19.

Abstract

Nanosized carriers engineered from red blood cells (RBCs) provide a means for delivering various cargos, including drugs, biologics, and imaging agents. We have engineered nanosized particles from RBCs, doped with the near-infrared (NIR) fluorochrome, indocyanine green (ICG). An important issue related to clinical translation of RBC-derived nanocarriers, including these NIR nanoparticles, is their stability postfabrication. Freezing may provide a method for long-term storage of these and other RBC-derived nanoparticles. Herein, we have investigated the physical and optical stability of these particles in response to a single freeze-thaw cycle. Nanoparticles were frozen to -20 °C, stored frozen for up to 8 weeks, and then thawed at room temperature. Our results show that the hydrodynamic diameter, zeta potential, optical density, and NIR fluorescence emission of these nanoparticles are retained following the freeze-thaw cycle. The ability of these nanoparticles in NIR fluorescence imaging of ovarian cancer cells, as well as their biodistribution in reticuloendothelial organs of healthy Swiss Webster mice after the freeze-thaw cycle is similar to that for freshly prepared nanoparticles. These results indicate that a single cycle of freezing the RBC-derived nanoparticles to -20 °C followed by thawing at room temperature is an effective method to retain the physical and optical characteristics of the nanoparticles, and their interactions with biological systems without the need for use of cryoprotectants.

摘要

由红细胞(RBC)构建的纳米载体为递送各种物质提供了一种手段,这些物质包括药物、生物制剂和成像剂。我们已利用红细胞构建了掺杂近红外(NIR)荧光染料吲哚菁绿(ICG)的纳米颗粒。与包括这些近红外纳米颗粒在内的红细胞衍生纳米载体的临床转化相关的一个重要问题是其制备后的稳定性。冷冻可能为这些以及其他红细胞衍生纳米颗粒的长期储存提供一种方法。在此,我们研究了这些颗粒在单次冻融循环后的物理和光学稳定性。将纳米颗粒冷冻至-20°C,冷冻储存长达8周,然后在室温下解冻。我们的结果表明,经过冻融循环后,这些纳米颗粒的流体动力学直径、zeta电位、光密度和近红外荧光发射得以保留。这些纳米颗粒对卵巢癌细胞进行近红外荧光成像的能力,以及在冻融循环后在健康瑞士韦伯斯特小鼠网状内皮器官中的生物分布与新鲜制备的纳米颗粒相似。这些结果表明,将红细胞衍生纳米颗粒单次冷冻至-20°C然后在室温下解冻是一种有效方法,可保留纳米颗粒的物理和光学特性及其与生物系统的相互作用,而无需使用冷冻保护剂。

相似文献

7
A hemocompatible cryoprotectant inspired by freezing-tolerant plants.受耐冻植物启发的血液相容性冷冻保护剂。
Colloids Surf B Biointerfaces. 2019 Apr 1;176:106-114. doi: 10.1016/j.colsurfb.2018.12.053. Epub 2018 Dec 19.

本文引用的文献

2
Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity.细胞纳米海绵抑制 SARS-CoV-2 感染性。
Nano Lett. 2020 Jul 8;20(7):5570-5574. doi: 10.1021/acs.nanolett.0c02278. Epub 2020 Jun 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验