de Gracia Triviño Juan Angel, Ahlquist Mårten S G
Departament of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
J Phys Chem Lett. 2020 Sep 3;11(17):7383-7387. doi: 10.1021/acs.jpclett.0c02009. Epub 2020 Aug 24.
In order to combine the advantages of molecular catalysts with the stability of solid-state catalysts, hybrid systems with catalysts immobilized on carbon nanotubes are prominent candidates. Here we explore our recent mechanistic proposal for Ru(tda)(py), the oxide relay mechanism, in a hybrid system from an experimental study. It reacts with the same efficiency but with increased stability compared to the homogeneous molecular catalyst. We used the empirical valence bond method and molecular dynamics with enhanced sampling approaches to investigate the two key steps in the mechanism: the intramolecular O-O bond formation and the OH nucleophilic attack. The results on these calculations show that the oxide relay mechanism remains unaltered in the new environment. We believe that the principles should apply to other oxide containing dangling groups and to other metal centers, opening new possibilities of future developments on hybrid molecular catalyst-based water splitting devices.
为了将分子催化剂的优势与固态催化剂的稳定性相结合,将催化剂固定在碳纳米管上的混合体系是突出的候选方案。在此,我们通过实验研究,在一个混合体系中探索了我们最近针对Ru(tda)(py)提出的机理——氧化物接力机理。与均相分子催化剂相比,它以相同的效率反应,但稳定性增强。我们使用经验价键方法和增强采样方法的分子动力学来研究该机理中的两个关键步骤:分子内O-O键的形成和OH亲核攻击。这些计算结果表明,氧化物接力机理在新环境中保持不变。我们相信这些原理应适用于其他含有悬空基团的氧化物以及其他金属中心,为基于混合分子催化剂的水分解装置的未来发展开辟了新的可能性。