Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.
Institute for Advanced Biosciences, Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, F-38000 Grenoble, France.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20576-20585. doi: 10.1073/pnas.2005218117. Epub 2020 Aug 11.
Temperate bacteriophages can enter one of two life cycles following infection of a sensitive host: the lysogenic or the lytic life cycle. The choice between the two alternative life cycles is dependent upon a tight regulation of promoters and their cognate regulatory proteins within the phage genome. We investigated the genetic switch of TP901-1, a bacteriophage of , controlled by the CI repressor and the modulator of repression (MOR) antirepressor and their interactions with DNA. We determined the solution structure of MOR, and we solved the crystal structure of MOR in complex with the N-terminal domain of CI, revealing the structural basis of MOR inhibition of CI binding to the DNA operator sites. N NMR Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and rotating frame measurements demonstrate that MOR displays molecular recognition dynamics on two different time scales involving a repacking of aromatic residues at the interface with CI. Mutations in the CI:MOR binding interface impair complex formation in vitro, and when introduced in vivo, the bacteriophage switch is unable to choose the lytic life cycle showing that the CI:MOR complex is essential for proper functioning of the genetic switch. On the basis of sequence alignments, we show that the structural features of the MOR:CI complex are likely conserved among a larger family of bacteriophages from human pathogens implicated in transfer of antibiotic resistance.
温和噬菌体感染敏感宿主后,可进入溶原或裂解两种生活周期之一:两种替代生活周期的选择取决于噬菌体基因组内启动子及其同源调节蛋白的紧密调控。我们研究了由 CI 阻遏物和阻遏物抑制子(MOR)反阻遏物控制的噬菌体 TP901-1 的遗传开关,及其与 DNA 的相互作用。我们测定了 MOR 的溶液结构,并解析了 MOR 与 CI N 端结构域复合物的晶体结构,揭示了 MOR 抑制 CI 结合 DNA 操纵子的结构基础。NMR Carr-Purcell-Meiboom-Gill (CPMG) 弛豫分散和旋转框架实验表明,MOR 在两个不同的时间尺度上表现出分子识别动力学,涉及与 CI 相互作用的芳基残基的重新组装。CI:MOR 结合界面的突变会损害体外复合物的形成,而当在体内引入时,噬菌体开关无法选择裂解生活周期,表明 CI:MOR 复合物对于遗传开关的正常功能是必不可少的。根据序列比对,我们表明 MOR:CI 复合物的结构特征可能在涉及抗生素耐药性转移的人类病原体中的更大噬菌体家族中保守。