Suppr超能文献

按需生产多样化治疗性噬菌体鸡尾酒的计算基础

Computational Basis for On-Demand Production of Diversified Therapeutic Phage Cocktails.

作者信息

Mageeney Catherine M, Sinha Anupama, Mosesso Richard A, Medlin Douglas L, Lau Britney Y, Rokes Alecia B, Lane Todd W, Branda Steven S, Williams Kelly P

机构信息

Sandia National Laboratories, Livermore, California, USA.

Sandia National Laboratories, Livermore, California, USA

出版信息

mSystems. 2020 Aug 11;5(4):e00659-20. doi: 10.1128/mSystems.00659-20.

Abstract

New therapies are necessary to combat increasingly antibiotic-resistant bacterial pathogens. We have developed a technology platform of computational, molecular biology, and microbiology tools which together enable on-demand production of phages that target virtually any given bacterial isolate. Two complementary computational tools that identify and precisely map prophages and other integrative genetic elements in bacterial genomes are used to identify prophage-laden bacteria that are close relatives of the target strain. Phage genomes are engineered to disable lysogeny, through use of long amplicon PCR and Gibson assembly. Finally, the engineered phage genomes are introduced into host bacteria for phage production. As an initial demonstration, we used this approach to produce a phage cocktail against the opportunistic pathogen PAO1. Two prophage-laden strains closely related to PAO1 were identified, ATCC 39324 and ATCC 27853. Deep sequencing revealed that mitomycin C treatment of these strains induced seven phages that grow on PAO1. The most diverse five phages were engineered for nonlysogeny by deleting the integrase gene (), which is readily identifiable and typically conveniently located at one end of the prophage. The Δ phages, individually and in cocktails, killed PAO1 in liquid culture as well as in a waxworm () model of infection. The antibiotic resistance crisis has led to renewed interest in phage therapy as an alternative means of treating infection. However, conventional methods for isolating pathogen-specific phage are slow, labor-intensive, and frequently unsuccessful. We have demonstrated that computationally identified prophages carried by near-neighbor bacteria can serve as starting material for production of engineered phages that kill the target pathogen. Our approach and technology platform offer new opportunity for rapid development of phage therapies against most, if not all, bacterial pathogens, a foundational advance for use of phage in treating infectious disease.

摘要

需要新的疗法来对抗日益具有抗生素抗性的细菌病原体。我们开发了一个由计算、分子生物学和微生物学工具组成的技术平台,这些工具共同实现了针对几乎任何给定细菌分离株按需生产噬菌体。两种互补的计算工具可识别并精确绘制细菌基因组中的原噬菌体和其他整合遗传元件,用于识别与目标菌株亲缘关系较近的携带原噬菌体的细菌。通过使用长扩增子PCR和吉布森组装技术,对噬菌体基因组进行改造以消除溶原性。最后,将改造后的噬菌体基因组导入宿主细菌中进行噬菌体生产。作为初步示范,我们使用这种方法生产了一种针对机会性病原体PAO1的噬菌体鸡尾酒。鉴定出了两种与PAO1密切相关的携带原噬菌体的菌株,即ATCC 39324和ATCC 27853。深度测序表明,用丝裂霉素C处理这些菌株可诱导出七种能在PAO1上生长的噬菌体。通过删除整合酶基因(该基因易于识别且通常位于原噬菌体的一端),对其中最多样化的五种噬菌体进行了非溶原性改造。这些Δ噬菌体单独使用或混合使用时,在液体培养物以及蜡虫感染模型中均能杀死PAO1。抗生素耐药性危机使得人们对噬菌体疗法作为治疗感染的替代手段重新产生了兴趣。然而,传统的分离病原体特异性噬菌体的方法速度慢、劳动强度大且常常不成功。我们已经证明,由近邻细菌携带的通过计算鉴定出的原噬菌体可以作为生产能杀死目标病原体的工程噬菌体的起始材料。我们的方法和技术平台为快速开发针对大多数(如果不是全部)细菌病原体的噬菌体疗法提供了新机会,这是噬菌体用于治疗传染病的一项基础性进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd63/7426155/aed6541f82f6/mSystems.00659-20-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验