文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于乳腺 X 光筛查和诊断的新型卷积神经网络模型。

New convolutional neural network model for screening and diagnosis of mammograms.

机构信息

College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China.

Technology Research Center of Spatial Information Network Engineering of Shanxi, Taiyuan, Shanxi, China.

出版信息

PLoS One. 2020 Aug 13;15(8):e0237674. doi: 10.1371/journal.pone.0237674. eCollection 2020.


DOI:10.1371/journal.pone.0237674
PMID:32790772
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7425967/
Abstract

Breast cancer is the most common cancer in women and poses a great threat to women's life and health. Mammography is an effective method for the diagnosis of breast cancer, but the results are largely limited by the clinical experience of radiologists. Therefore, the main purpose of this study is to perform two-stage classification (Normal/Abnormal and Benign/Malignancy) of two- view mammograms through convolutional neural network. In this study, we constructed a multi-view feature fusion network model for classification of mammograms from two views, and we proposed a multi-scale attention DenseNet as the backbone network for feature extraction. The model consists of two independent branches, which are used to extract the features of two mammograms from different views. Our work mainly focuses on the construction of multi-scale convolution module and attention module. The final experimental results show that the model has achieved good performance in both classification tasks. We used the DDSM database to evaluate the proposed method. The accuracy, sensitivity and AUC values of normal and abnormal mammograms classification were 94.92%, 96.52% and 94.72%, respectively. And the accuracy, sensitivity and AUC values of benign and malignant mammograms classification were 95.24%, 96.11% and 95.03%, respectively.

摘要

乳腺癌是女性最常见的癌症,对女性的生命和健康构成了极大的威胁。乳腺 X 线摄影是诊断乳腺癌的有效方法,但结果在很大程度上受到放射科医生临床经验的限制。因此,本研究的主要目的是通过卷积神经网络对双视图乳腺 X 线照片进行两阶段分类(正常/异常和良性/恶性)。在这项研究中,我们构建了一个用于从两个视图分类乳腺 X 线照片的多视图特征融合网络模型,并提出了一个多尺度注意 DenseNet 作为特征提取的骨干网络。该模型由两个独立的分支组成,用于从不同视图提取两张乳腺 X 线照片的特征。我们的工作主要集中在多尺度卷积模块和注意模块的构建上。最终的实验结果表明,该模型在两个分类任务中都取得了良好的性能。我们使用 DDSM 数据库来评估所提出的方法。正常和异常乳腺 X 线照片分类的准确率、敏感度和 AUC 值分别为 94.92%、96.52%和 94.72%,良性和恶性乳腺 X 线照片分类的准确率、敏感度和 AUC 值分别为 95.24%、96.11%和 95.03%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/645c3235da49/pone.0237674.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/51c9ce64dd1b/pone.0237674.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/14732c4fd96a/pone.0237674.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/ca3158c75adb/pone.0237674.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/7c769fb625f0/pone.0237674.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/f0a490b7f11f/pone.0237674.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/965e4301aba4/pone.0237674.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/507e63a7ab5f/pone.0237674.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/57165d80e98c/pone.0237674.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/b74c05c43a6c/pone.0237674.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/645c3235da49/pone.0237674.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/51c9ce64dd1b/pone.0237674.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/14732c4fd96a/pone.0237674.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/ca3158c75adb/pone.0237674.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/7c769fb625f0/pone.0237674.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/f0a490b7f11f/pone.0237674.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/965e4301aba4/pone.0237674.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/507e63a7ab5f/pone.0237674.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/57165d80e98c/pone.0237674.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/b74c05c43a6c/pone.0237674.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/7425967/645c3235da49/pone.0237674.g010.jpg

相似文献

[1]
New convolutional neural network model for screening and diagnosis of mammograms.

PLoS One. 2020-8-13

[2]
Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.

Med Phys. 2021-7

[3]
Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.

Comput Methods Programs Biomed. 2018-1-11

[4]
Can a Machine Learn from Radiologists' Visual Search Behaviour and Their Interpretation of Mammograms-a Deep-Learning Study.

J Digit Imaging. 2019-10

[5]
Improved PAA algorithm for breast mass detection in mammograms.

Comput Methods Programs Biomed. 2024-6

[6]
Fusion of k-Gabor features from medio-lateral-oblique and craniocaudal view mammograms for improved breast cancer diagnosis.

J Cancer Res Ther. 2018

[7]
Deep Convolutional Neural Networks for breast cancer screening.

Comput Methods Programs Biomed. 2018-1-11

[8]
A multi-task fusion model based on a residual-Multi-layer perceptron network for mammographic breast cancer screening.

Comput Methods Programs Biomed. 2024-4

[9]
Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

Med Phys. 2017-3

[10]
Mass type-specific sparse representation for mass classification in computer-aided detection on mammograms.

Biomed Eng Online. 2013-12-9

引用本文的文献

[1]
Improving Benign and Malignant Classifications in Mammography with ROI-Stratified Deep Learning.

Bioengineering (Basel). 2025-8-20

[2]
A Lightweight Breast Cancer Mass Classification Model Utilizing Simplified Swarm Optimization and Knowledge Distillation.

Bioengineering (Basel). 2025-6-11

[3]
Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization.

Bioengineering (Basel). 2025-3-21

[4]
Hybrid transformer-based model for mammogram classification by integrating prior and current images.

Med Phys. 2025-5

[5]
Reproducibility and Explainability of Deep Learning in Mammography: A Systematic Review of Literature.

Indian J Radiol Imaging. 2023-10-10

[6]
Clinical application of convolutional neural network for mass analysis on mammograms.

Quant Imaging Med Surg. 2023-12-1

[7]
The application of traditional machine learning and deep learning techniques in mammography: a review.

Front Oncol. 2023-8-11

[8]
Sensitivity of CNN image analysis to multifaceted measurements of neurite growth.

BMC Bioinformatics. 2023-8-24

[9]
Leveraging Multi-Task Learning to Cope With Poor and Missing Labels of Mammograms.

Front Radiol. 2022-1-11

[10]
Exploiting Patch Sizes and Resolutions for Multi-Scale Deep Learning in Mammogram Image Classification.

Bioengineering (Basel). 2023-4-27

本文引用的文献

[1]
Deep Learning: A Breakthrough in Medical Imaging.

Curr Med Imaging. 2020

[2]
Generalization error analysis for deep convolutional neural network with transfer learning in breast cancer diagnosis.

Phys Med Biol. 2020-5-11

[3]
Deep feature-based automatic classification of mammograms.

Med Biol Eng Comput. 2020-6

[4]
External Validation of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice.

Acad Radiol. 2021-4

[5]
Inconsistent Performance of Deep Learning Models on Mammogram Classification.

J Am Coll Radiol. 2020-6

[6]
Deep Neural Networks With Region-Based Pooling Structures for Mammographic Image Classification.

IEEE Trans Med Imaging. 2020-6

[7]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[8]
AI-based computer-aided diagnosis (AI-CAD): the latest review to read first.

Radiol Phys Technol. 2020-3

[9]
Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN).

J Med Syst. 2019-12-14

[10]
Deep learning modeling using normal mammograms for predicting breast cancer risk.

Med Phys. 2019-11-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索