College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030600, China.
College of Data Science, Taiyuan University of Technology, Taiyuan, 030600, China.
Med Phys. 2021 Jul;48(7):3878-3892. doi: 10.1002/mp.14942. Epub 2021 May 31.
PURPOSE: Breast cancer is the cancer with the highest incidence in women, and early detection can effectively improve the survival rate of patients. Mammography is an important method for physicians to screening breast cancer, but the diagnosis of mammograms by physicians depends largely on clinical practice experience. Studies have shown that using computer-aided diagnosis techniques can help doctors diagnose breast cancer. METHODS: In this paper, the method of convolutional neural network is mainly used to classify benign and malignant breast masses in the mammograms. First, we use multi-scale residual networks and densely connected networks as backbone networks to extract the features of global image patches and local image patches. Second, we use the attention module named convolutional block attention module (CBAM) to improve the two feature extraction networks to enhance the network's feature expression ability. Finally, we fuse the features of multi-scale image patches to achieve the classification of benign and malignant breast masses. RESULTS: In the digital database for screening mammography (DDSM) database, the accuracy, sensitivity, AUC value and corresponding standard deviation of our method are 0.9626 ± 0.0110, 0.9719 ± 0.0126, and 0.9576 ± 0.0064, respectively. Compared with the commonly used ResNet (AUC = 0.8823 ± 0.0112) and DenseNet (AUC = 0.9141 ± 0.0085), the performance of our method has improved. In addition, we also used the INbreast database to train and validate the proposed method. The accuracy, sensitivity, AUC and corresponding standard deviations are 0.9554 ± 0.0296, 0.9605 ± 0.0228, and 0.9468 ± 0.0085, respectively. CONCLUSIONS: Compared with the previous work, our proposed method uses multi-scale image features, has better classification performance in breast mass patches classification tasks, and can effectively assist physicians in breast cancer diagnosis.
目的:乳腺癌是女性发病率最高的癌症,早期发现可以有效提高患者的生存率。乳腺 X 线摄影是医生筛查乳腺癌的重要方法,但医生对乳腺 X 线摄影的诊断在很大程度上依赖于临床实践经验。研究表明,使用计算机辅助诊断技术可以帮助医生诊断乳腺癌。
方法:本文主要采用卷积神经网络方法对乳腺 X 线片中的良性和恶性乳腺肿块进行分类。首先,我们使用多尺度残差网络和密集连接网络作为骨干网络,提取全局图像补丁和局部图像补丁的特征。其次,我们使用名为卷积块注意力模块(CBAM)的注意力模块来改进两个特征提取网络,以增强网络的特征表达能力。最后,我们融合多尺度图像补丁的特征,实现良性和恶性乳腺肿块的分类。
结果:在数字乳腺筛查数据库(DDSM)中,我们的方法的准确率、敏感度、AUC 值和相应的标准差分别为 0.9626±0.0110、0.9719±0.0126 和 0.9576±0.0064。与常用的 ResNet(AUC=0.8823±0.0112)和 DenseNet(AUC=0.9141±0.0085)相比,我们的方法的性能有所提高。此外,我们还使用 INbreast 数据库对所提出的方法进行了训练和验证。准确率、敏感度、AUC 和相应的标准差分别为 0.9554±0.0296、0.9605±0.0228 和 0.9468±0.0085。
结论:与之前的工作相比,我们提出的方法使用了多尺度图像特征,在乳腺肿块分类任务中具有更好的分类性能,可以有效辅助医生进行乳腺癌诊断。
Comput Methods Programs Biomed. 2021-3
Comput Methods Programs Biomed. 2018-1-11
Comput Methods Programs Biomed. 2018-1-31
Comput Methods Programs Biomed. 2021-8
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
Comput Methods Programs Biomed. 2018-1-11
Annu Int Conf IEEE Eng Med Biol Soc. 2017-7
Front Bioeng Biotechnol. 2025-4-29
Indian J Radiol Imaging. 2023-10-10
Multimed Tools Appl. 2024
Nan Fang Yi Ke Da Xue Xue Bao. 2023-8-20
Diagnostics (Basel). 2023-2-3