文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多尺度注意力的卷积神经网络在乳腺 X 光片中乳腺肿块的分类。

Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.

机构信息

College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030600, China.

College of Data Science, Taiyuan University of Technology, Taiyuan, 030600, China.

出版信息

Med Phys. 2021 Jul;48(7):3878-3892. doi: 10.1002/mp.14942. Epub 2021 May 31.


DOI:10.1002/mp.14942
PMID:33982807
Abstract

PURPOSE: Breast cancer is the cancer with the highest incidence in women, and early detection can effectively improve the survival rate of patients. Mammography is an important method for physicians to screening breast cancer, but the diagnosis of mammograms by physicians depends largely on clinical practice experience. Studies have shown that using computer-aided diagnosis techniques can help doctors diagnose breast cancer. METHODS: In this paper, the method of convolutional neural network is mainly used to classify benign and malignant breast masses in the mammograms. First, we use multi-scale residual networks and densely connected networks as backbone networks to extract the features of global image patches and local image patches. Second, we use the attention module named convolutional block attention module (CBAM) to improve the two feature extraction networks to enhance the network's feature expression ability. Finally, we fuse the features of multi-scale image patches to achieve the classification of benign and malignant breast masses. RESULTS: In the digital database for screening mammography (DDSM) database, the accuracy, sensitivity, AUC value and corresponding standard deviation of our method are 0.9626 ± 0.0110, 0.9719 ± 0.0126, and 0.9576 ± 0.0064, respectively. Compared with the commonly used ResNet (AUC = 0.8823 ± 0.0112) and DenseNet (AUC = 0.9141 ± 0.0085), the performance of our method has improved. In addition, we also used the INbreast database to train and validate the proposed method. The accuracy, sensitivity, AUC and corresponding standard deviations are 0.9554 ± 0.0296, 0.9605 ± 0.0228, and 0.9468 ± 0.0085, respectively. CONCLUSIONS: Compared with the previous work, our proposed method uses multi-scale image features, has better classification performance in breast mass patches classification tasks, and can effectively assist physicians in breast cancer diagnosis.

摘要

目的:乳腺癌是女性发病率最高的癌症,早期发现可以有效提高患者的生存率。乳腺 X 线摄影是医生筛查乳腺癌的重要方法,但医生对乳腺 X 线摄影的诊断在很大程度上依赖于临床实践经验。研究表明,使用计算机辅助诊断技术可以帮助医生诊断乳腺癌。

方法:本文主要采用卷积神经网络方法对乳腺 X 线片中的良性和恶性乳腺肿块进行分类。首先,我们使用多尺度残差网络和密集连接网络作为骨干网络,提取全局图像补丁和局部图像补丁的特征。其次,我们使用名为卷积块注意力模块(CBAM)的注意力模块来改进两个特征提取网络,以增强网络的特征表达能力。最后,我们融合多尺度图像补丁的特征,实现良性和恶性乳腺肿块的分类。

结果:在数字乳腺筛查数据库(DDSM)中,我们的方法的准确率、敏感度、AUC 值和相应的标准差分别为 0.9626±0.0110、0.9719±0.0126 和 0.9576±0.0064。与常用的 ResNet(AUC=0.8823±0.0112)和 DenseNet(AUC=0.9141±0.0085)相比,我们的方法的性能有所提高。此外,我们还使用 INbreast 数据库对所提出的方法进行了训练和验证。准确率、敏感度、AUC 和相应的标准差分别为 0.9554±0.0296、0.9605±0.0228 和 0.9468±0.0085。

结论:与之前的工作相比,我们提出的方法使用了多尺度图像特征,在乳腺肿块分类任务中具有更好的分类性能,可以有效辅助医生进行乳腺癌诊断。

相似文献

[1]
Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.

Med Phys. 2021-7

[2]
New convolutional neural network model for screening and diagnosis of mammograms.

PLoS One. 2020-8-13

[3]
YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.

Comput Methods Programs Biomed. 2021-3

[4]
Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.

Comput Methods Programs Biomed. 2018-1-11

[5]
Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.

Comput Methods Programs Biomed. 2018-1-31

[6]
DV-DCNN: Dual-view deep convolutional neural network for matching detected masses in mammograms.

Comput Methods Programs Biomed. 2021-8

[7]
A Novel Algorithm for Breast Mass Classification in Digital Mammography Based on Feature Fusion.

J Healthc Eng. 2020

[8]
A Two-Stage Multiple Instance Learning Framework for the Detection of Breast Cancer in Mammograms.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[9]
Deep Convolutional Neural Networks for breast cancer screening.

Comput Methods Programs Biomed. 2018-1-11

[10]
Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

引用本文的文献

[1]
sEMG-based gesture recognition using multi-stream adaptive CNNs with integrated residual modules.

Front Bioeng Biotechnol. 2025-4-29

[2]
Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography.

Diagnostics (Basel). 2025-4-9

[3]
The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: a narrative-review.

Prz Gastroenterol. 2024

[4]
CSA-Net: Channel and Spatial Attention-Based Network for Mammogram and Ultrasound Image Classification.

J Imaging. 2024-10-16

[5]
Reproducibility and Explainability of Deep Learning in Mammography: A Systematic Review of Literature.

Indian J Radiol Imaging. 2023-10-10

[6]
DF-dRVFL: A novel deep feature based classifier for breast mass classification.

Multimed Tools Appl. 2024

[7]
Improved Loss Function for Mass Segmentation in Mammography Images Using Density and Mass Size.

J Imaging. 2024-1-9

[8]
[A Dual-Aware deep learning framework for identification of glioma isocitrate dehydrogenase genotype using magnetic resonance amide proton transfer modalities].

Nan Fang Yi Ke Da Xue Xue Bao. 2023-8-20

[9]
The application of traditional machine learning and deep learning techniques in mammography: a review.

Front Oncol. 2023-8-11

[10]
A Medical Image Segmentation Method Based on Improved UNet 3+ Network.

Diagnostics (Basel). 2023-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索