Suppr超能文献

使用黏膜活检筛选和鉴定肺移植排斥反应的关键调控关联及免疫细胞浸润特征。

Screening and identification of key regulatory connections and immune cell infiltration characteristics for lung transplant rejection using mucosal biopsies.

机构信息

Medical School of Nanchang University, Nanchang, PR China.

Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.

出版信息

Int Immunopharmacol. 2020 Oct;87:106827. doi: 10.1016/j.intimp.2020.106827. Epub 2020 Aug 10.

Abstract

This study aimed to explore key regulatory connections underlying lung transplant rejection. The differentially expressed genes (DEGs) between rejection and stable lung transplantation (LTx) samples were screened using R package limma, followed by functional enrichment analysis and protein-protein interaction network construction. Subsequently, a global triple network, including miRNAs, mRNAs, and transcription factors (TFs), was constructed. Furthermore, immune cell infiltration characteristics were analyzed to investigate the molecular immunology of lung transplant rejection. Finally, potential drug-target interactions were generated. In brief, 739 DEGs were found between rejection and stable LTx samples. PTPRC, IL-6, ITGAM, CD86, TLR8, TYROBP, CXCL10, ITGB2, and CCR5 were defined as hub genes. Eight TFs, including STAT1, SPIB, NFKB1, SPI1, STAT5A, RUNX1, VENTX, and BATF, and five miRNAs, including miR-335-5p, miR-26b-5p, miR-124-3p, miR-1-3p, and miR-155-5p, were involved in regulating hub genes. The immune cell infiltration analysis revealed higher proportions of activated memory CD4 T cells, follicular helper T cells, γδ T cells, monocytes, M1 and M2 macrophages, and eosinophils in rejection samples, besides lower proportions of resting memory CD4 T cells, regulatory T cells, activated NK cells, M0 macrophages, and resting mast cells. This study provided a comprehensive perspective of the molecular co-regulatory network underlying lung transplant rejection.

摘要

本研究旨在探索肺移植排斥反应的关键调控关系。使用 R 包 limma 筛选排斥和稳定肺移植(LTx)样本之间的差异表达基因(DEGs),然后进行功能富集分析和蛋白质-蛋白质相互作用网络构建。随后,构建了包括 miRNA、mRNA 和转录因子(TFs)在内的全局三重网络。此外,分析免疫细胞浸润特征,以研究肺移植排斥的分子免疫学。最后,生成潜在的药物-靶标相互作用。简而言之,在排斥和稳定 LTx 样本之间发现了 739 个 DEGs。PTPRC、IL-6、ITGAM、CD86、TLR8、TYROBP、CXCL10、ITGB2 和 CCR5 被定义为枢纽基因。STAT1、SPIB、NFKB1、SPI1、STAT5A、RUNX1、 VENTX 和 BATF 等 8 个 TF,以及 miR-335-5p、miR-26b-5p、miR-124-3p、miR-1-3p 和 miR-155-5p 等 5 个 miRNA,参与调控枢纽基因。免疫细胞浸润分析显示,排斥样本中激活的记忆 CD4 T 细胞、滤泡辅助 T 细胞、γδ T 细胞、单核细胞、M1 和 M2 巨噬细胞和嗜酸性粒细胞的比例较高,而静息记忆 CD4 T 细胞、调节性 T 细胞、活化 NK 细胞、M0 巨噬细胞和静息肥大细胞的比例较低。本研究提供了肺移植排斥反应的分子共调控网络的综合视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267e/7417178/106a8009524d/gr1_lrg.jpg

相似文献

2
CCR7 and CD48 as Predicted Targets in Acute Rejection Related to M1 Macrophage after Pediatric Kidney Transplantation.
J Immunol Res. 2024 Jun 24;2024:6908968. doi: 10.1155/2024/6908968. eCollection 2024.
4
Investigation of hub genes and immune status in heart transplant rejection using endomyocardial biopsies.
J Cell Mol Med. 2021 Jan;25(2):763-773. doi: 10.1111/jcmm.16127. Epub 2020 Nov 23.
9
Identification of key genes and immune infiltration in multiple myeloma by bioinformatics analysis.
Hematology. 2023 Dec;28(1):2264517. doi: 10.1080/16078454.2023.2264517. Epub 2023 Oct 10.

引用本文的文献

1
Gene expression profiling in PBMCs for acute rejection in lung transplant recipients reveals myeloid responses.
Front Transplant. 2024 Dec 18;3:1508419. doi: 10.3389/frtra.2024.1508419. eCollection 2024.
4
Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts.
Sci Adv. 2024 May 17;10(20):eadk6178. doi: 10.1126/sciadv.adk6178. Epub 2024 May 15.
5
Cancer-on-chip: a 3D model for the study of the tumor microenvironment.
J Biol Eng. 2023 Aug 17;17(1):53. doi: 10.1186/s13036-023-00372-6.
6
MicroRNAs based regulation of cytokine regulating immune expressed genes and their transcription factors in COVID-19.
Meta Gene. 2022 Feb;31:100990. doi: 10.1016/j.mgene.2021.100990. Epub 2021 Oct 26.
7
-induced protein tyrosine phosphatase receptor type C as a prognostic biomarker for gastric cancer.
J Gastrointest Oncol. 2021 Jun;12(3):1058-1073. doi: 10.21037/jgo-21-305.
8
MicroRNA-1: Diverse role of a small player in multiple cancers.
Semin Cell Dev Biol. 2022 Apr;124:114-126. doi: 10.1016/j.semcdb.2021.05.020. Epub 2021 May 24.
9
A Five Immune-Related lncRNA Signature as a Prognostic Target for Glioblastoma.
Front Mol Biosci. 2021 Feb 16;8:632837. doi: 10.3389/fmolb.2021.632837. eCollection 2021.

本文引用的文献

1
Lung Transplantation for Elderly Patients With End-Stage COVID-19 Pneumonia.
Ann Surg. 2020 Jul;272(1):e33-e34. doi: 10.1097/SLA.0000000000003955.
5
Role of donor macrophages after heart and lung transplantation.
Am J Transplant. 2020 May;20(5):1225-1235. doi: 10.1111/ajt.15751. Epub 2020 Jan 29.
6
Lifitegrast ophthalmic solution for treatment of ocular chronic graft-versus-host disease.
Leuk Lymphoma. 2020 Apr;61(4):869-874. doi: 10.1080/10428194.2019.1695049. Epub 2019 Nov 25.
7
Is interleukin-6 receptor blockade (tocilizumab) beneficial or detrimental to pig-to-baboon organ xenotransplantation?
Am J Transplant. 2020 Apr;20(4):999-1013. doi: 10.1111/ajt.15712. Epub 2020 Jan 3.
8
Molecular phenotyping of rejection-related changes in mucosal biopsies from lung transplants.
Am J Transplant. 2020 Apr;20(4):954-966. doi: 10.1111/ajt.15685. Epub 2019 Dec 1.
10
Idiopathic Pulmonary Fibrosis and Lung Transplantation: When it is Feasible.
Medicina (Kaunas). 2019 Oct 19;55(10):702. doi: 10.3390/medicina55100702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验