Lemieux-Labonté Virginie, Dorville Nicole A S-Y, Willis Craig K R, Lapointe François-Joseph
Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.
Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada.
Front Microbiol. 2020 Jul 23;11:1776. doi: 10.3389/fmicb.2020.01776. eCollection 2020.
Little is known about skin microbiota in the context of the disease white-nose syndrome (WNS), caused by the fungus (), that has caused enormous declines of hibernating North American bats over the past decade. Interestingly, some hibernating species, such as the big brown bat (), appear resistant to the disease and their skin microbiota could play a role. However, a comprehensive analysis of the skin microbiota of in the context of has not been done. In January 2017, we captured hibernating , sampled their skin microbiota, and inoculated them with or sham inoculum. We allowed the bats to hibernate in the lab under controlled conditions for 11 weeks and then sampled their skin microbiota to test the following hypotheses: (1) infection would not disrupt the skin microbiota of -resistant ; and (2) microbial taxa with antifungal properties would be abundant both before and after inoculation with . Using high-throughput 16S rRNA gene sequencing, we discovered that beta diversity of -inoculated bats changed more over time than that of sham-inoculated bats. Still, the most abundant taxa in the community were stable throughout the experiment. Among the most abundant taxa, and are known for antifungal potential against and other fungi. Thus, in contrast to hypothesis 1, infection destabilized the skin microbiota but consistent with hypothesis 2, bacteria with known antifungal properties remained abundant and stable on the skin. This study is the first to provide a comprehensive survey of skin microbiota of , suggesting potential associations between the bat skin microbiota and resistance to the infection and WNS. These results set the stage for future studies to characterize microbiota gene expression, better understand mechanisms of resistance to WNS, and help develop conservation strategies.
关于由真菌(此处原文真菌名称缺失)引起的白鼻综合征(WNS)背景下的皮肤微生物群,我们所知甚少。在过去十年中,这种疾病已导致北美冬眠蝙蝠数量大幅下降。有趣的是,一些冬眠物种,如大棕蝠(此处原文物种名称缺失),似乎对该疾病具有抵抗力,其皮肤微生物群可能发挥了作用。然而,尚未对处于白鼻综合征背景下的(此处原文物种名称缺失)皮肤微生物群进行全面分析。2017年1月,我们捕获了冬眠的(此处原文物种名称缺失),对其皮肤微生物群进行采样,并用(此处原文真菌名称缺失)或假接种物对它们进行接种。我们让蝙蝠在实验室的可控条件下冬眠11周,然后对其皮肤微生物群进行采样,以检验以下假设:(1)(此处原文真菌名称缺失)感染不会破坏对(此处原文真菌名称缺失)有抵抗力的(此处原文物种名称缺失)的皮肤微生物群;(2)具有抗真菌特性的微生物类群在接种(此处原文真菌名称缺失)之前和之后都会大量存在。通过高通量16S rRNA基因测序,我们发现接种(此处原文真菌名称缺失)的蝙蝠的β多样性随时间的变化比假接种蝙蝠的更大。尽管如此,群落中最丰富的类群在整个实验过程中是稳定的。在最丰富的类群中,(此处原文细菌名称缺失)和(此处原文细菌名称缺失)以对(此处原文真菌名称缺失)和其他真菌具有抗真菌潜力而闻名。因此,与假设1相反,(此处原文真菌名称缺失)感染使皮肤微生物群不稳定,但与假设2一致,具有已知抗真菌特性的细菌在皮肤上仍然大量存在且稳定。这项研究首次对(此处原文物种名称缺失)的皮肤微生物群进行了全面调查,表明蝙蝠皮肤微生物群与对(此处原文真菌名称缺失)感染和白鼻综合征的抵抗力之间可能存在关联。这些结果为未来研究微生物群基因表达、更好地理解对白鼻综合征的抵抗机制以及帮助制定保护策略奠定了基础。