Perea-García Ana, Andrés-Bordería Amparo, Vera-Sirera Francisco, Pérez-Amador Miguel Angel, Puig Sergi, Peñarrubia Lola
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain.
Front Plant Sci. 2020 Jul 23;11:1106. doi: 10.3389/fpls.2020.01106. eCollection 2020.
The present work describes the effects on iron homeostasis when copper transport was deregulated in by overexpressing high affinity copper transporters COPT1 and COPT3 ( ). A genome-wide analysis conducted on plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix () factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulator but activated expression in plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased in plants. Thus, iron (III) overloading in roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in the seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency.
本研究描述了通过过表达高亲和力铜转运蛋白COPT1和COPT3( )来解除铜转运调控时对铁稳态的影响。对 植物进行的全基因组分析表明,在铜缺乏和过量的情况下,铁稳态基因的表达均受到影响。其中,受影响的基因包括编码铁吸收机制及其转录调节因子的基因。随后, 幼苗的铁含量较低,并且比对照更易受到缺铁的影响。在铜缺乏的情况下,铜(I)吸收的失调阻碍了基本螺旋-环-螺旋( )因子Ib亚组的转录激活。相反,铜过量抑制了主要调节因子 的表达,但在 植物中激活了 表达,这两种情况均导致缺乏适当的铁吸收反应。随着培养基中铜含量的增加,铁(III)在根中积累,并且在 植物中铁(III)/铁(II)的比率增加。因此, 根中铁(III)过载抑制了旨在从土壤中吸收金属的局部缺铁反应,导致 幼苗中铁含量普遍较低。这些结果强调了在非最佳铜供应条件下,适当的时空铜吸收对铁稳态的重要性。了解铜吸收在铁代谢中的作用可用于提高作物对缺铁的抗性。