Sato Dye Sk
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
Phys Rev E. 2020 Jul;102(1-1):012111. doi: 10.1103/PhysRevE.102.012111.
Dynamic renormalization group (RG) of fluctuating viscoelastic equations is investigated to clarify the cause for numerically reported disappearance of anomalous heat conduction (recovery of Fourier's law) in low-dimensional momentum-conserving systems. RG flow is obtained explicitly for simplified two model cases: a one-dimensional continuous medium under low pressure and incompressible viscoelastic medium of arbitrary dimensions. Analyses of these clarify that the inviscid fixed point of contributing the anomalous heat conduction becomes unstable under the RG flow of nonzero elastic-wave speeds. The dynamic RG analysis further predicts a universal scaling of describing the crossover between the growth and saturation of observed heat conductivity, which is confirmed through the numerical experiments of Fermi-Pasta-Ulam β (FPU-β) lattices.
研究了波动粘弹性方程的动态重整化群(RG),以阐明在低维动量守恒系统中数值报道的反常热传导消失(傅里叶定律恢复)的原因。对于简化的两种模型情况明确得到了RG流:一种是低压下的一维连续介质,另一种是任意维度的不可压缩粘弹性介质。对这些情况的分析表明,在非零弹性波速度的RG流下,导致反常热传导的无粘不动点变得不稳定。动态RG分析进一步预测了描述观测热导率增长和饱和之间交叉的通用标度,这通过费米-帕斯塔-乌拉姆β(FPU-β)晶格的数值实验得到了证实。