Roy Dibyendu
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041102. doi: 10.1103/PhysRevE.86.041102. Epub 2012 Oct 1.
We study heat conduction in one-, two-, and three-dimensional anharmonic lattices connected to stochastic Langevin heat baths. The interatomic potential of the lattices is double-well type, i.e., V(DW)(x)=k(2)x(2)/2+k(4)x(4)/4 with k(2)<0 and k(4)>0. We observe two different temperature regimes of transport: a high-temperature regime where asymptotic length dependence of nonequilibrium steady state heat current is similar to the well-known Fermi-Pasta-Ulam lattices with an interatomic potential, V(FPU)(x)=k(2)x(2)/2+k(4)x(4)/4 with k(2),k(4)>0, and a low-temperature regime where heat conduction is most likely diffusive normal, satisfying Fourier's law. We present our simulation results for different temperature regimes in all dimensions.
我们研究了与随机朗之万热浴相连的一维、二维和三维非谐晶格中的热传导。晶格的原子间势为双阱型,即(V_{(DW)}(x)=\frac{k_2x^2}{2}+\frac{k_4x^4}{4}),其中(k_2\lt0)且(k_4\gt0)。我们观察到两种不同的输运温度区域:一种是高温区域,其中非平衡稳态热流的渐近长度依赖性类似于具有原子间势(V_{(FPU)}(x)=\frac{k_2x^2}{2}+\frac{k_4x^4}{4})((k_2,k_4\gt0))的著名费米 - 帕斯塔 - 乌拉姆晶格;另一种是低温区域,其中热传导很可能是扩散正态的,满足傅里叶定律。我们给出了所有维度下不同温度区域的模拟结果。