RIKEN Center for Advanced Intelligent Project, Chuo-ku, Tokyo, 103-0027, Japan
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan; and Center for Materials Research by Information Integration, National Institute for Material Science, Sengen, Tsukuba, Ibaraki, 305-0047, Japan
Neural Comput. 2020 Oct;32(10):1998-2031. doi: 10.1162/neco_a_01310. Epub 2020 Aug 14.
In this letter, we study an active learning problem for maximizing an unknown linear function with high-dimensional binary features. This problem is notoriously complex but arises in many important contexts. When the sampling budget, that is, the number of possible function evaluations, is smaller than the number of dimensions, it tends to be impossible to identify all of the optimal binary features. Therefore, in practice, only a small number of such features are considered, with the majority kept fixed at certain default values, which we call the . The main contribution of this letter is to formally study the working set heuristic and present a suite of theoretically robust algorithms for more efficient use of the sampling budget. Technically, we introduce a novel method for estimating the confidence regions of model parameters that is tailored to active learning with high-dimensional binary features. We provide a rigorous theoretical analysis of these algorithms and prove that a commonly used working set heuristic can identify optimal binary features with favorable sample complexity. We explore the performance of the proposed approach through numerical simulations and an application to a functional protein design problem.
在这封信中,我们研究了一个具有高维二进制特征的未知线性函数最大化的主动学习问题。这个问题非常复杂,但在许多重要的背景下都存在。当采样预算(即可能的函数评估数量)小于维度数量时,识别所有最优二进制特征往往变得不可能。因此,在实践中,只考虑少数这样的特征,而将大多数特征固定在某些默认值上,我们称之为. 这封信的主要贡献是正式研究工作集启发式,并提出了一系列理论上稳健的算法,以更有效地利用采样预算。从技术上讲,我们引入了一种新的方法来估计模型参数的置信区域,该方法专门针对具有高维二进制特征的主动学习。我们对这些算法进行了严格的理论分析,并证明了常用的工作集启发式可以以有利的样本复杂度识别最优的二进制特征。我们通过数值模拟和对功能蛋白质设计问题的应用来探索所提出方法的性能。