From Harvard Medical School; Division of Digital Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA (Drs. Benoit, Keshavan, and Torous); Cardiac Psychiatry Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA (Dr. Onyeaka).
Harv Rev Psychiatry. 2020 Sep/Oct;28(5):296-304. doi: 10.1097/HRP.0000000000000268.
Digital phenotyping is the use of data from smartphones and wearables collected in situ for capturing a digital expression of human behaviors. Digital phenotyping techniques can be used to analyze both passively (e.g., sensor) and actively (e.g., survey) collected data. Machine learning offers a possible predictive bridge between digital phenotyping and future clinical state. This review examines passive digital phenotyping across the schizophrenia spectrum and bipolar disorders, with a focus on machine-learning studies.
A systematic review of passive digital phenotyping literature was conducted using keywords related to severe mental illnesses, data-collection devices (e.g., smartphones, wearables, actigraphy devices), and streams of data collected. Searches of five databases initially yielded 3312 unique publications. Fifty-one studies were selected for inclusion, with 16 using machine-learning techniques.
All studies differed in features used, data pre-processing, analytical techniques, algorithms tested, and performance metrics reported. Across all studies, the data streams and other study factors reported also varied widely. Machine-learning studies focused on random forest, support vector, and neural net approaches, and almost exclusively on bipolar disorder.
Many machine-learning techniques have been applied to passively collected digital phenotyping data in schizophrenia and bipolar disorder. Larger studies, and with improved data quality, are needed, as is further research on the application of machine learning to passive digital phenotyping data in early diagnosis and treatment of psychosis. In order to achieve greater comparability of studies, common data elements are identified for inclusion in future studies.
数字表型是指使用智能手机和可穿戴设备中就地收集的数据来捕捉人类行为的数字表达。数字表型技术可用于分析被动(例如,传感器)和主动(例如,调查)收集的数据。机器学习为数字表型与未来临床状态之间提供了一种可能的预测桥梁。本综述考察了精神分裂症谱系和双相情感障碍的被动数字表型,重点是机器学习研究。
使用与严重精神疾病、数据收集设备(例如,智能手机、可穿戴设备、活动记录仪)和收集的数据流相关的关键字,对被动数字表型文献进行了系统综述。最初对五个数据库进行了搜索,共产生了 3312 篇独特的出版物。选择了 51 项研究进行纳入,其中 16 项使用了机器学习技术。
所有研究在使用的特征、数据预处理、分析技术、测试的算法和报告的性能指标方面均存在差异。在所有研究中,报告的数据流和其他研究因素也差异很大。机器学习研究主要集中在随机森林、支持向量和神经网络方法上,几乎仅针对双相情感障碍。
许多机器学习技术已应用于精神分裂症和双相情感障碍的被动收集数字表型数据。需要更大规模的研究,并且需要提高数据质量,还需要进一步研究机器学习在精神病的早期诊断和治疗中对被动数字表型数据的应用。为了实现研究之间的更大可比性,确定了包含在未来研究中的通用数据元素。