Suppr超能文献

在精神病谱系中使用机器学习进行生物标志物发现。

Biomarker discovery using machine learning in the psychosis spectrum.

作者信息

Yassin Walid, Loedige Kendra M, Wannan Cassandra M J, Holton Kristina M, Chevinsky Jonathan, Torous John, Hall Mei-Hua, Ye Rochelle Ruby, Kumar Poornima, Chopra Sidhant, Kumar Kshitij, Khokhar Jibran Y, Margolis Eric, De Nadai Alessandro S

机构信息

Harvard Medical School, Boston, MA, USA.

Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

Biomark Neuropsychiatry. 2024 Dec;11. doi: 10.1016/j.bionps.2024.100107. Epub 2024 Aug 26.

Abstract

The past decade witnessed substantial discoveries related to the psychosis spectrum. Many of these discoveries resulted from pursuits of objective and quantifiable biomarkers in tandem with the application of analytical tools such as machine learning. These approaches provided exciting new insights that significantly helped improve precision in diagnosis, prognosis, and treatment. This article provides an overview of how machine learning has been employed in recent biomarker discovery research in the psychosis spectrum, which includes schizophrenia, schizoaffective disorders, bipolar disorder with psychosis, first episode psychosis, and clinical high risk for psychosis. It highlights both human and animal model studies and explores a varying range of the most impactful biomarkers including cognition, neuroimaging, electrophysiology, and digital markers. We specifically highlight new applications and opportunities for machine learning to impact noninvasive symptom monitoring, prediction of future diagnosis and treatment outcomes, integration of new methods with traditional clinical research and practice, and personalized medicine approaches.

摘要

在过去十年中,人们在精神病谱系方面有了重大发现。其中许多发现源于对客观且可量化的生物标志物的探索,同时还应用了机器学习等分析工具。这些方法带来了令人兴奋的新见解,极大地有助于提高诊断、预后和治疗的精准度。本文概述了机器学习在近期精神病谱系生物标志物发现研究中的应用情况,该谱系包括精神分裂症、分裂情感性障碍、伴有精神病性症状的双相情感障碍、首发精神病以及精神病临床高危状态。文章突出了人体和动物模型研究,并探讨了一系列最具影响力的生物标志物,包括认知、神经影像学、电生理学和数字标志物。我们特别强调了机器学习在无创症状监测、未来诊断和治疗结果预测、新方法与传统临床研究及实践的整合以及个性化医疗方法等方面的新应用和机会。

相似文献

1
Biomarker discovery using machine learning in the psychosis spectrum.
Biomark Neuropsychiatry. 2024 Dec;11. doi: 10.1016/j.bionps.2024.100107. Epub 2024 Aug 26.
2
Deconstructing Cognitive Impairment in Psychosis With a Machine Learning Approach.
JAMA Psychiatry. 2025 Jan 1;82(1):57-65. doi: 10.1001/jamapsychiatry.2024.3062.
3
Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and Their Relationship to Cognitive and Clinical Features.
Am J Psychiatry. 2021 Oct 1;178(10):952-964. doi: 10.1176/appi.ajp.2021.20071043. Epub 2021 Aug 19.
6
Systematic Review of Digital Phenotyping and Machine Learning in Psychosis Spectrum Illnesses.
Harv Rev Psychiatry. 2020 Sep/Oct;28(5):296-304. doi: 10.1097/HRP.0000000000000268.

引用本文的文献

本文引用的文献

1
Brainwide Anatomical Connectivity and Prediction of Longitudinal Outcomes in Antipsychotic-Naïve First-Episode Psychosis.
Biol Psychiatry. 2025 Jan 15;97(2):157-166. doi: 10.1016/j.biopsych.2024.07.016. Epub 2024 Jul 26.
3
Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk.
Mol Psychiatry. 2024 May;29(5):1465-1477. doi: 10.1038/s41380-024-02426-7. Epub 2024 Feb 9.
5
Identification of immune-related biomarkers in peripheral blood of schizophrenia using bioinformatic methods and machine learning algorithms.
Front Cell Neurosci. 2023 Sep 28;17:1256184. doi: 10.3389/fncel.2023.1256184. eCollection 2023.
6
A Functional Connectome-Based Neural Signature for Individualized Prediction of Antipsychotic Response in First-Episode Psychosis.
Am J Psychiatry. 2023 Nov 1;180(11):827-835. doi: 10.1176/appi.ajp.20220719. Epub 2023 Aug 30.
7
A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis.
Mol Psychiatry. 2023 Aug;28(8):3278-3292. doi: 10.1038/s41380-023-02195-9. Epub 2023 Aug 10.
8
Incidence, prevalence, and global burden of schizophrenia - data, with critical appraisal, from the Global Burden of Disease (GBD) 2019.
Mol Psychiatry. 2023 Dec;28(12):5319-5327. doi: 10.1038/s41380-023-02138-4. Epub 2023 Jul 27.
9
A neuromarker for deficit syndrome in schizophrenia from a combination of structural and functional magnetic resonance imaging.
CNS Neurosci Ther. 2023 Dec;29(12):3774-3785. doi: 10.1111/cns.14297. Epub 2023 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验