Yassin Walid, Loedige Kendra M, Wannan Cassandra M J, Holton Kristina M, Chevinsky Jonathan, Torous John, Hall Mei-Hua, Ye Rochelle Ruby, Kumar Poornima, Chopra Sidhant, Kumar Kshitij, Khokhar Jibran Y, Margolis Eric, De Nadai Alessandro S
Harvard Medical School, Boston, MA, USA.
Beth Israel Deaconess Medical Center, Boston, MA, USA.
Biomark Neuropsychiatry. 2024 Dec;11. doi: 10.1016/j.bionps.2024.100107. Epub 2024 Aug 26.
The past decade witnessed substantial discoveries related to the psychosis spectrum. Many of these discoveries resulted from pursuits of objective and quantifiable biomarkers in tandem with the application of analytical tools such as machine learning. These approaches provided exciting new insights that significantly helped improve precision in diagnosis, prognosis, and treatment. This article provides an overview of how machine learning has been employed in recent biomarker discovery research in the psychosis spectrum, which includes schizophrenia, schizoaffective disorders, bipolar disorder with psychosis, first episode psychosis, and clinical high risk for psychosis. It highlights both human and animal model studies and explores a varying range of the most impactful biomarkers including cognition, neuroimaging, electrophysiology, and digital markers. We specifically highlight new applications and opportunities for machine learning to impact noninvasive symptom monitoring, prediction of future diagnosis and treatment outcomes, integration of new methods with traditional clinical research and practice, and personalized medicine approaches.
在过去十年中,人们在精神病谱系方面有了重大发现。其中许多发现源于对客观且可量化的生物标志物的探索,同时还应用了机器学习等分析工具。这些方法带来了令人兴奋的新见解,极大地有助于提高诊断、预后和治疗的精准度。本文概述了机器学习在近期精神病谱系生物标志物发现研究中的应用情况,该谱系包括精神分裂症、分裂情感性障碍、伴有精神病性症状的双相情感障碍、首发精神病以及精神病临床高危状态。文章突出了人体和动物模型研究,并探讨了一系列最具影响力的生物标志物,包括认知、神经影像学、电生理学和数字标志物。我们特别强调了机器学习在无创症状监测、未来诊断和治疗结果预测、新方法与传统临床研究及实践的整合以及个性化医疗方法等方面的新应用和机会。