Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
Integrative Biomedical Informatics Group (GRIB-IMIM). Department of Experimental and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
Protein Sci. 2020 Oct;29(10):2112-2130. doi: 10.1002/pro.3930. Epub 2020 Sep 5.
Protein-protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state-of-the-art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state-of-art methods.
蛋白质-蛋白质相互作用(PPIs)在细胞内外发生的所有分子方面。然而,实验确定 PPIs 的结构和亲和力既昂贵又耗时。因此,开发计算工具作为实验方法的补充至关重要。在这里,我们提出了一个计算套件:MODPIN,用于模拟和预测 PPIs 结合亲和力的变化。在这种方法中,我们使用同源建模来推导 PPIs 的结构,并使用最先进的评分函数对其进行评分。我们通过生成不是单个结构模型,而是基于几个模板的不同构象的结构模型集合来探索 PPIs 的构象空间。我们应用该方法来预测 PPIs 大数据集中突变和剪接变体的自由能变化,以统计量化预测的质量和准确性。例如,我们使用 MODPIN 来研究大肠杆菌中 colicin 内切酶 9 和 colicin 内切酶 2 免疫蛋白相互作用中突变的影响。最后,我们将结果与其他最先进的方法进行了比较。