Versteven Marijke, Ernst Karla-Marlen, Stanewsky Ralf
Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster 48149, Germany.
Institute of Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster 48149, Germany.
iScience. 2020 Aug 21;23(8):101388. doi: 10.1016/j.isci.2020.101388. Epub 2020 Jul 20.
Circadian clocks are characterized by three properties: they run in constant conditions with a period of ∼24 h, synchronize to the environmental cycles of light and temperature, and are temperature compensated, meaning they do not speed up with temperature. Central brain clocks regulate daily activity rhythms, whereas peripheral clocks are dispersed throughout the body of insects and vertebrates. Using a set of luciferase reporter genes, we show that Drosophila peripheral clocks are self-sustained but over-compensated, i.e., they slow down with increasing temperature. In contrast, central clock neurons in the fly brain, both in intact flies and in cultured brains, show accurate temperature compensation. Although this suggests that neural network properties contribute to temperature compensation, the circadian neuropeptide Pigment Dispersing Factor (PDF) is not required for temperature-compensated oscillations in brain clock neurons. Our findings reveal a fundamental difference between central and peripheral clocks, which likely also applies for vertebrate clocks.
它们在恒定条件下以约24小时的周期运行,与光和温度的环境周期同步,并且具有温度补偿功能,即它们不会随着温度升高而加速。中枢脑生物钟调节日常活动节律,而外周生物钟则分布在昆虫和脊椎动物的全身。我们使用一组荧光素酶报告基因表明,果蝇外周生物钟是自我维持的,但存在过度补偿现象,即它们会随着温度升高而减慢。相比之下,无论是完整果蝇还是培养的大脑中的果蝇脑中枢生物钟神经元,都表现出精确的温度补偿。虽然这表明神经网络特性有助于温度补偿,但昼夜节律神经肽色素分散因子(PDF)对于脑生物钟神经元的温度补偿振荡并非必需。我们的研究结果揭示了中枢和外周生物钟之间的根本差异,这可能同样适用于脊椎动物的生物钟。