Suppr超能文献

不同温度下稳定生物节律的温度-振幅耦合

Temperature-amplitude coupling for stable biological rhythms at different temperatures.

作者信息

Kurosawa Gen, Fujioka Atsuko, Koinuma Satoshi, Mochizuki Atsushi, Shigeyoshi Yasufumi

机构信息

Theoretical Biology Laboratory, RIKEN, Wako, Japan.

Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osakasayama City, Osaka, Japan.

出版信息

PLoS Comput Biol. 2017 Jun 8;13(6):e1005501. doi: 10.1371/journal.pcbi.1005501. eCollection 2017 Jun.

Abstract

Most biological processes accelerate with temperature, for example cell division. In contrast, the circadian rhythm period is robust to temperature fluctuation, termed temperature compensation. Temperature compensation is peculiar because a system-level property (i.e., the circadian period) is stable under varying temperature while individual components of the system (i.e., biochemical reactions) are usually temperature-sensitive. To understand the mechanism for period stability, we measured the time series of circadian clock transcripts in cultured C6 glioma cells. The amplitudes of Cry1 and Dbp circadian expression increased significantly with temperature. In contrast, other clock transcripts demonstrated no significant change in amplitude. To understand these experimental results, we analyzed mathematical models with different network topologies. It was found that the geometric mean amplitude of gene expression must increase to maintain a stable period with increasing temperatures and reaction speeds for all models studied. To investigate the generality of this temperature-amplitude coupling mechanism for period stability, we revisited data on the yeast metabolic cycle (YMC) period, which is also stable under temperature variation. We confirmed that the YMC amplitude increased at higher temperatures, suggesting temperature-amplitude coupling as a common mechanism shared by circadian and 4 h-metabolic rhythms.

摘要

大多数生物过程会随着温度升高而加速,例如细胞分裂。相比之下,昼夜节律周期对温度波动具有稳健性,这被称为温度补偿。温度补偿很特别,因为系统层面的特性(即昼夜节律周期)在温度变化时保持稳定,而系统的各个组成部分(即生化反应)通常对温度敏感。为了理解周期稳定性的机制,我们测量了培养的C6胶质瘤细胞中昼夜节律时钟转录本的时间序列。Cry1和Dbp昼夜表达的振幅随温度显著增加。相比之下,其他时钟转录本的振幅没有显著变化。为了理解这些实验结果,我们分析了具有不同网络拓扑结构的数学模型。结果发现,对于所有研究的模型,随着温度和反应速度的增加,基因表达的几何平均振幅必须增加才能维持稳定的周期。为了研究这种温度 - 振幅耦合机制对周期稳定性的普遍性,我们重新审视了酵母代谢周期(YMC)周期的数据,该周期在温度变化下也很稳定。我们证实,YMC振幅在较高温度下增加,这表明温度 - 振幅耦合是昼夜节律和4小时代谢节律共有的一种常见机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f773/5464531/7a93d3416c46/pcbi.1005501.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验