Department of Integrative Medical Biology, Section of Physiology, Umeå University, 90187 Umeå, Sweden
Developmental Genetics, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden.
J Neurosci. 2020 Sep 9;40(37):7091-7104. doi: 10.1523/JNEUROSCI.2892-19.2020. Epub 2020 Aug 12.
Skilled forelimb movements are initiated by feedforward motor commands conveyed by supraspinal motor pathways. The accuracy of reaching and grasping relies on internal feedback pathways that update ongoing motor commands. In mice lacking the axon guidance molecule EphA4, axonal misrouting of the corticospinal tract and spinal interneurons is manifested, leading to a hopping gait in hindlimbs. Moreover, mice with a conditional forebrain deletion of EphA4, display forelimb hopping in adaptive locomotion and exploratory reaching movements. However, it remains unclear how loss of EphA4 signaling disrupts function of forelimb motor circuit and skilled reaching and grasping movements. Here we investigated how neural circuits controlling skilled reaching were affected by the loss of EphA4. Both male and female C57BL/6 wild-type, heterozygous EphA4, and homozygous EphA4 mice were used in behavioral and electrophysiological investigations. We found that EphA4 knock-out (-/-) mice displayed impaired goal-directed reaching movements. intracellular recordings from forelimb motor neurons demonstrated increased corticoreticulospinal excitation, decreased direct reticulospinal excitation, and reduced direct propriospinal excitation in EphA4 knock-out mice. Cerebellar surface recordings showed a functional perturbation of the lateral reticular nucleus-cerebellum internal feedback pathway in EphA4 knock-out mice. Together, our findings provide evidence at the circuit level that loss of EphA4 disrupts the function of both feedforward and feedback motor pathways, resulting in deficits in skilled reaching. The central advances of this study are the demonstration that null mutation in the axon guidance molecule EphA4 gene impairs the ability of mice to perform skilled reaching, and identification of how these behavioral deficits correlates with discrete neurophysiological changes in central motor pathways involved in the control of reaching. Our findings provide evidence at the circuit level that loss of EphA4 disrupts both feedforward and feedback motor pathways, resulting in deficits in skilled reaching. This analysis of motor circuit function may help to understand the pathophysiological mechanisms underlying movement disorders in humans.
熟练的前肢运动是由来自皮质脊髓束和脊髓中间神经元的上运动神经元通路的前馈运动指令引发的。抓握的准确性依赖于更新持续运动指令的内部反馈通路。在缺乏轴突导向分子 EphA4 的小鼠中,皮质脊髓束和脊髓中间神经元的轴突发生了错误连接,导致后肢出现跳跃步态。此外,条件性 EphA4 前脑缺失的小鼠在适应性运动和探索性抓握运动中表现出前肢跳跃。然而,EphA4 信号缺失如何破坏前肢运动回路以及熟练的抓握和抓握运动的功能仍不清楚。在这里,我们研究了控制熟练抓握的神经回路如何受到 EphA4 缺失的影响。使用 C57BL/6 野生型、杂合 EphA4 和纯合 EphA4 雄性和雌性小鼠进行行为和电生理研究。我们发现 EphA4 敲除(-/-)小鼠表现出受损的目标导向抓握运动。前肢运动神经元的细胞内记录显示 EphA4 敲除小鼠的皮质网状脊髓兴奋增加,直接网状脊髓兴奋减少,直接固有脊髓兴奋减少。小脑表面记录显示 EphA4 敲除小鼠的外侧网状核-小脑内部反馈通路出现功能障碍。总的来说,我们的研究结果提供了在回路水平上的证据,表明 EphA4 的缺失破坏了前馈和反馈运动通路的功能,导致熟练抓握能力受损。这项研究的中心进展是证明轴突导向分子 EphA4 基因突变会损害小鼠进行熟练抓握的能力,并确定这些行为缺陷如何与涉及抓握控制的中枢运动通路中的离散神经生理变化相关。我们的研究结果提供了在回路水平上的证据,表明 EphA4 的缺失破坏了前馈和反馈运动通路,导致熟练抓握能力受损。对运动回路功能的这种分析可能有助于理解人类运动障碍的病理生理机制。