Suppr超能文献

核糖体工程化菌株 GG 表现出细胞表面甘油醛-3-磷酸脱氢酶的积累和增强与人结肠粘蛋白的黏附。

Ribosome-Engineered Strain GG Exhibits Cell Surface Glyceraldehyde-3-Phosphate Dehydrogenase Accumulation and Enhanced Adhesion to Human Colonic Mucin.

机构信息

Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan.

Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan

出版信息

Appl Environ Microbiol. 2020 Oct 1;86(20). doi: 10.1128/AEM.01448-20.

Abstract

Differences in individual host responses have emerged as an issue regarding the health benefits of probiotics. Here, we applied ribosome engineering (RE) technology, developed in an actinomycete study, to GG (LGG). RE can effectively enhance microbial potential by using antibiotics to induce spontaneous mutations in the ribosome and/or RNA polymerase. In this study, we identified eight types of streptomycin resistance mutations in the LGG gene, which encodes ribosomal protein S12. Notably, LGG harboring the K56N mutant (LGG-MT) expressed high levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the cell surface compared with the LGG wild type (LGG-WT). GAPDH plays a key role in colonic mucin adhesion. Indeed, LGG-MT significantly increased type A human colonic mucin adhesion compared to LGG-WT in experiments using the Biacore system. The ability to adhere to the colon is an important property of probiotics; thus, these results suggest that RE is an effective breeding strategy for probiotic lactic acid bacteria. We sought to apply ribosome engineering (RE) to probiotic lactic acid bacteria and to verify RE's impact. Here, we showed that one mutant of RE GG (LGG-MT) bore a GAPDH on the cell surface; the GAPDH was exported via an ABC transporter. Compared to the wild-type parent, LGG-MT adhered more strongly to human colonic mucin and exhibited a distinct cell size and shape. These findings demonstrate that RE in LGG-MT yielded dramatic changes in protein synthesis, protein transport, and cell morphology and affected adherence to human colonic mucin.

摘要

个体宿主反应的差异已成为益生菌健康益处的一个问题。在这里,我们将核糖体工程(RE)技术应用于 GG(LGG),该技术是在放线菌研究中开发的。RE 可以通过使用抗生素在核糖体和/或 RNA 聚合酶中诱导自发突变,从而有效地增强微生物的潜力。在这项研究中,我们在编码核糖体蛋白 S12 的 LGG 基因中鉴定出了 8 种链霉素抗性突变。值得注意的是,与 LGG 野生型(LGG-WT)相比,携带 K56N 突变(LGG-MT)的 LGG 在细胞表面表达高水平的甘油醛-3-磷酸脱氢酶(GAPDH)。GAPDH 在结肠粘蛋白黏附中起关键作用。事实上,与 LGG-WT 相比,LGG-MT 在 Biacore 系统实验中显著增加了对 A 型人结肠粘蛋白的黏附。黏附结肠的能力是益生菌的一个重要特性;因此,这些结果表明,RE 是益生菌乳酸菌的一种有效繁殖策略。我们试图将核糖体工程(RE)应用于益生菌乳酸菌,并验证 RE 的影响。在这里,我们表明 RE 的一个 LGG 突变体(LGG-MT)在细胞表面携带 GAPDH;GAPDH 通过 ABC 转运蛋白输出。与野生型亲本相比,LGG-MT 更强烈地黏附于人结肠粘蛋白上,表现出明显的细胞大小和形状。这些发现表明,LGG-MT 中的 RE 导致蛋白质合成、蛋白质转运和细胞形态发生剧烈变化,并影响对人结肠粘蛋白的黏附。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d688/7531950/52d5adcd0fa9/AEM.01448-20-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验