Suppr超能文献

用于工业应用的天然和异源酶生产的潜在资源。

: A Potential Resource of the Production of the Native and Heterologous Enzymes for Industrial Applications.

作者信息

Kumar Amit

机构信息

Department of Biotechnology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia.

出版信息

Int J Microbiol. 2020 Aug 1;2020:8894215. doi: 10.1155/2020/8894215. eCollection 2020.

Abstract

is a filamentous fungus that is a potential resource for industrial enzymes. It is a versatile fungal cell factory that can synthesize various industrial enzymes such as cellulases, -glucosidases, hemicellulases, laccases, lipases, proteases, -galactosidases, tannases, keratinase, cutinases, and aryl alcohol oxidase. has shown the potential to utilize low-cost substrates such as wheat bran, rice straw, sugarcane bagasse, rice bran, coir pith, black gram residue, and chicken feathers to produce enzymes cost-effectively. has also been known as a model organism for the production of heterologous enzymes. Several studies reported genetically engineered strains of for the production of different enzymes. Native as well as heterologous enzymes of have been employed for various industrial processes.

摘要

是一种丝状真菌,是工业酶的潜在资源。它是一种多功能的真菌细胞工厂,能够合成多种工业酶,如纤维素酶、β-葡萄糖苷酶、半纤维素酶、漆酶、脂肪酶、蛋白酶、β-半乳糖苷酶、鞣酸酶、角蛋白酶、角质酶和芳醇氧化酶。已显示出利用低成本底物(如麦麸、稻草、甘蔗渣、米糠、椰壳纤维髓、黑豆残渣和鸡毛)经济高效地生产酶的潜力。它也一直被认为是生产异源酶的模式生物。几项研究报道了用于生产不同酶的基因工程菌株。其天然酶和异源酶已被用于各种工业过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7416255/dc2bd56589e7/ijmicro2020-8894215.001.jpg

相似文献

1
: A Potential Resource of the Production of the Native and Heterologous Enzymes for Industrial Applications.
Int J Microbiol. 2020 Aug 1;2020:8894215. doi: 10.1155/2020/8894215. eCollection 2020.
2
Improving extracellular production of food-use enzymes from Aspergillus nidulans.
J Biotechnol. 2002 Jun 13;96(1):43-54. doi: 10.1016/s0168-1656(02)00036-6.
3
Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.
Adv Food Nutr Res. 2017;80:125-148. doi: 10.1016/bs.afnr.2016.11.003. Epub 2016 Dec 20.
4
Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production.
Appl Microbiol Biotechnol. 2016 Jul;100(14):6345-6359. doi: 10.1007/s00253-016-7517-5. Epub 2016 Apr 20.
5
Rational design for fungal laccase production in the model host Aspergillus nidulans.
Sci China Life Sci. 2019 Jan;62(1):84-94. doi: 10.1007/s11427-017-9304-8. Epub 2018 Jun 12.
7
Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose.
Biotechnol Biofuels. 2016 Aug 8;9:168. doi: 10.1186/s13068-016-0580-4. eCollection 2016.
9
De novo biosynthesis and gram-level production of m-cresol in Aspergillus nidulans.
Appl Microbiol Biotechnol. 2021 Aug;105(16-17):6333-6343. doi: 10.1007/s00253-021-11490-w. Epub 2021 Aug 23.

引用本文的文献

1
Considerations for Domestication of Novel Strains of Filamentous Fungi.
ACS Synth Biol. 2025 Feb 21;14(2):343-362. doi: 10.1021/acssynbio.4c00672. Epub 2025 Jan 30.
5
Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi.
J Fungi (Basel). 2024 Feb 13;10(2):152. doi: 10.3390/jof10020152.
6
Degradation of Structurally Modified Polylactide under the Controlled Composting of Food Waste.
Polymers (Basel). 2023 Oct 7;15(19):4017. doi: 10.3390/polym15194017.
7
The Forkhead Gene is Necessary for Proper Development in .
J Microbiol Biotechnol. 2023 Nov 28;33(11):1420-1427. doi: 10.4014/jmb.2307.07009. Epub 2023 Aug 4.
9
Heterologous protein production in filamentous fungi.
Appl Microbiol Biotechnol. 2023 Aug;107(16):5019-5033. doi: 10.1007/s00253-023-12660-8. Epub 2023 Jul 5.
10
Species-specific effects of the introduction of Aspergillus nidulans gfdB in osmophilic aspergilli.
Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2423-2436. doi: 10.1007/s00253-023-12384-9. Epub 2023 Feb 22.

本文引用的文献

3
Rice straw fermentation by ARC-11 to produce high level of xylanase for its application in pre-bleaching.
J Genet Eng Biotechnol. 2018 Dec;16(2):693-701. doi: 10.1016/j.jgeb.2018.02.006. Epub 2018 Feb 23.
4
Biodegradation of feather waste by keratinase produced from newly isolated ALW1.
J Genet Eng Biotechnol. 2018 Dec;16(2):311-318. doi: 10.1016/j.jgeb.2018.05.005. Epub 2018 May 28.
5
Purification and catalytic behavior optimization of lactose degrading β-galactosidase from .
J Food Sci Technol. 2019 Jan;56(1):167-176. doi: 10.1007/s13197-018-3470-x. Epub 2018 Nov 13.
6
Production of crude enzyme from AKB-25 using black gram residue as the substrate and its industrial applications.
J Genet Eng Biotechnol. 2016 Jun;14(1):107-118. doi: 10.1016/j.jgeb.2016.06.004. Epub 2016 Jul 4.
7
Production of phenolic compounds using waste coir pith: Estimation of kinetic and thermodynamic parameters.
Bioresour Technol. 2019 Feb;274:173-179. doi: 10.1016/j.biortech.2018.11.073. Epub 2018 Nov 22.
9
A logical and sustainable approach towards bamboo pulp bleaching using xylanase from Aspergillus nidulans.
Int J Biol Macromol. 2018 Oct 15;118(Pt A):452-459. doi: 10.1016/j.ijbiomac.2018.06.100. Epub 2018 Jun 22.
10
Optimization of physicochemical parameters of tannase post-purification and its versatile bioactivity.
FEMS Microbiol Lett. 2018 Jun 1;365(12). doi: 10.1093/femsle/fny051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验