Dunker Susanne, Motivans Elena, Rakosy Demetra, Boho David, Mäder Patrick, Hornick Thomas, Knight Tiffany M
Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany.
German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany.
New Phytol. 2021 Jan;229(1):593-606. doi: 10.1111/nph.16882. Epub 2020 Sep 22.
Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best-performing classifier to yield a species-averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.
花粉鉴定和定量分析在解决各种进化和生态问题(传粉、古植物学)方面至关重要,但也颇具挑战性,在其他研究领域(如过敏学、蜂蜜分析或法医学)亦是如此。研究人员正在探索替代方法以实现这些任务的自动化,但由于多种原因,手动显微镜检查仍是金标准。在本研究中,我们提出了一种结合深度学习的多光谱成像流式细胞术进行花粉分析的新方法。我们证明,我们的方法能够在实现高精度花粉鉴定的同时进行快速测量。使用一个包含来自35种植物物种花粉的426876张图像的数据集来训练一个卷积神经网络分类器。我们发现性能最佳的分类器物种平均准确率达到96%。即使是使用显微镜难以区分的物种也能被清晰分开。我们的方法还能详细测定花粉的形态特征,如大小、对称性或结构。我们的系统发育分析表明其中一些特征存在系统发育保守性。给定一个全面的花粉参考数据库,我们提供了一个强大的工具,可用于任何需要对近期花粉进行快速准确的物种鉴定、花粉粒定量分析和特征提取的花粉研究。