Suppr超能文献

MFM-300(铝)对有毒空气污染物的长期稳定性。

Long-Term Stability of MFM-300(Al) toward Toxic Air Pollutants.

作者信息

Carter Joseph H, Morris Christopher G, Godfrey Harry G W, Day Sarah J, Potter Jonathan, Thompson Stephen P, Tang Chiu C, Yang Sihai, Schröder Martin

机构信息

Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K..

Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K..

出版信息

ACS Appl Mater Interfaces. 2020 Sep 23;12(38):42949-42954. doi: 10.1021/acsami.0c11134. Epub 2020 Sep 14.

Abstract

Temperature- or pressure-swing sorption in porous metal-organic framework (MOF) materials has been proposed for new gas separation technologies. The high tunability of MOFs toward particular adsorbates and the relatively low energy penalty for system regeneration indicate that reversible physisorption in MOFs has the potential to create economic and environmental benefits compared with state-of-the-art chemisorption systems. However, for MOF-based sorbents to be commercialized, they have to show long-term stability under the conditions imposed by the application. Here, we demonstrate the structural stability of MFM-300(Al) in the presence of a series of industrially relevant toxic and corrosive gases, including SO, NO, and NH, over 4 years using long-duration synchrotron X-ray powder diffraction. Full structural analysis of gas-loaded MFM-300(Al) confirms the retention of these toxic gas molecules within the porous framework for up to 200 weeks, and cycling adsorption experiments verified the reusability of MFM-300(Al) for the capture of these toxic air pollutants.

摘要

多孔金属有机框架(MOF)材料中的变温或变压吸附已被用于新型气体分离技术。MOF对特定吸附质具有高度可调节性,且系统再生所需的能量损失相对较低,这表明与最先进的化学吸附系统相比,MOF中的可逆物理吸附有创造经济和环境效益的潜力。然而,要使基于MOF的吸附剂商业化,它们必须在应用所施加的条件下表现出长期稳定性。在此,我们使用长期同步加速器X射线粉末衍射,证明了MFM-300(Al)在一系列与工业相关的有毒和腐蚀性气体(包括SO、NO和NH)存在的情况下,历经4年的结构稳定性。对负载气体的MFM-300(Al)进行的全结构分析证实,这些有毒气体分子在多孔框架内最多可保留200周,循环吸附实验验证了MFM-300(Al)用于捕获这些有毒空气污染物的可重复使用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de0/7517712/4192ce2f6d60/am0c11134_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验