Zhao J, He G, Huang S, Villalobos L F, Dakhchoune M, Bassas H, Agrawal K V
Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland.
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
Sci Adv. 2019 Jan 25;5(1):eaav1851. doi: 10.1126/sciadv.aav1851. eCollection 2019 Jan.
One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O plasma and O treatment. A high density (ca. 2.1 × 10 cm) of H-sieving pores was achieved while limiting the percentage of CH-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H permeance, 1340 to 6045 gas permeation units; H/CH separation factor, 15.6 to 25.1; H/CH separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.
实现原子级厚度的石墨烯膜用于气体筛分潜力的瓶颈之一,是难以在原本不可渗透的石墨烯晶格中以足够高的孔密度、埃级精度引入纳米孔。我们通过使用氧等离子体和氧处理开发一种协同的、部分解耦的缺陷成核和孔扩展策略来实现这种设计。在将甲烷渗透孔的百分比限制在百万分之13至22的同时,实现了高密度(约2.1×10个/平方厘米)的氢筛分孔。结果,实现了创纪录的高气体混合物分离性能(氢渗透率,1340至6045气体渗透单位;氢/甲烷分离因子,15.6至25.1;氢/一氧化碳分离因子,38.0至57.8)。这种高度可扩展的孔蚀刻策略将加速基于单层石墨烯的节能膜的开发。