Suppr超能文献

以埃级精度在单层石墨烯中蚀刻气体筛分纳米孔用于高性能气体混合物分离。

Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.

作者信息

Zhao J, He G, Huang S, Villalobos L F, Dakhchoune M, Bassas H, Agrawal K V

机构信息

Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1951, Switzerland.

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

出版信息

Sci Adv. 2019 Jan 25;5(1):eaav1851. doi: 10.1126/sciadv.aav1851. eCollection 2019 Jan.

Abstract

One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O plasma and O treatment. A high density (ca. 2.1 × 10 cm) of H-sieving pores was achieved while limiting the percentage of CH-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H permeance, 1340 to 6045 gas permeation units; H/CH separation factor, 15.6 to 25.1; H/CH separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.

摘要

实现原子级厚度的石墨烯膜用于气体筛分潜力的瓶颈之一,是难以在原本不可渗透的石墨烯晶格中以足够高的孔密度、埃级精度引入纳米孔。我们通过使用氧等离子体和氧处理开发一种协同的、部分解耦的缺陷成核和孔扩展策略来实现这种设计。在将甲烷渗透孔的百分比限制在百万分之13至22的同时,实现了高密度(约2.1×10个/平方厘米)的氢筛分孔。结果,实现了创纪录的高气体混合物分离性能(氢渗透率,1340至6045气体渗透单位;氢/甲烷分离因子,15.6至25.1;氢/一氧化碳分离因子,38.0至57.8)。这种高度可扩展的孔蚀刻策略将加速基于单层石墨烯的节能膜的开发。

相似文献

1
Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.
Sci Adv. 2019 Jan 25;5(1):eaav1851. doi: 10.1126/sciadv.aav1851. eCollection 2019 Jan.
2
Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36468-36477. doi: 10.1021/acsami.0c07277. Epub 2020 Jul 28.
3
Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
Acc Mater Res. 2022 Oct 28;3(10):1073-1087. doi: 10.1021/accountsmr.2c00143. Epub 2022 Sep 13.
4
Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
ACS Nano. 2017 Aug 22;11(8):7974-7987. doi: 10.1021/acsnano.7b02523. Epub 2017 Jul 19.
6
Single-layer graphene membranes by crack-free transfer for gas mixture separation.
Nat Commun. 2018 Jul 6;9(1):2632. doi: 10.1038/s41467-018-04904-3.
7
Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
Nano Lett. 2018 Aug 8;18(8):5057-5069. doi: 10.1021/acs.nanolett.8b01866. Epub 2018 Jul 31.
8
Millisecond lattice gasification for high-density CO- and O-sieving nanopores in single-layer graphene.
Sci Adv. 2021 Feb 24;7(9). doi: 10.1126/sciadv.abf0116. Print 2021 Feb.

引用本文的文献

1
A molecularly engineered large-area nanoporous atomically thin graphene membrane for ion separation.
Nat Commun. 2025 May 19;16(1):4626. doi: 10.1038/s41467-025-59625-1.
2
Graphene Nanopore Fabrication and Applications.
Int J Mol Sci. 2025 Feb 17;26(4):1709. doi: 10.3390/ijms26041709.
3
High-performance H/CO separation from 4-nm-thick oriented Zn(benzimidazole) films.
Sci Adv. 2024 Dec 13;10(50):eads6315. doi: 10.1126/sciadv.ads6315.
4
Nanoporous Amorphous Carbon Monolayer Derived from Fullerene Film.
Adv Sci (Weinh). 2024 Mar;11(10):e2308187. doi: 10.1002/advs.202308187. Epub 2023 Dec 28.
5
Mechanistic Insights on Functionalization of Graphene with Ozone.
J Phys Chem C Nanomater Interfaces. 2023 Nov 7;127(45):22015-22022. doi: 10.1021/acs.jpcc.3c03994. eCollection 2023 Nov 16.
6
Selective Photonic Gasification of Strained Oxygen Clusters on Graphene for Tuning Pore Size in the Å Regime.
JACS Au. 2023 Sep 29;3(10):2844-2854. doi: 10.1021/jacsau.3c00395. eCollection 2023 Oct 23.
7
Pyro-layered heterostructured nanosheet membrane for hydrogen separation.
Nat Commun. 2023 Apr 15;14(1):2161. doi: 10.1038/s41467-023-37932-9.
10
Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
Acc Mater Res. 2022 Oct 28;3(10):1073-1087. doi: 10.1021/accountsmr.2c00143. Epub 2022 Sep 13.

本文引用的文献

1
Single-layer graphene membranes by crack-free transfer for gas mixture separation.
Nat Commun. 2018 Jul 6;9(1):2632. doi: 10.1038/s41467-018-04904-3.
2
Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam.
Sci Rep. 2018 Jun 27;8(1):9765. doi: 10.1038/s41598-018-28136-z.
3
Bottom-up synthesis of multifunctional nanoporous graphene.
Science. 2018 Apr 13;360(6385):199-203. doi: 10.1126/science.aar2009.
4
Self-Assembly of Thiourea-Crosslinked Graphene Oxide Framework Membranes toward Separation of Small Molecules.
Adv Mater. 2018 Apr;30(16):e1705775. doi: 10.1002/adma.201705775. Epub 2018 Mar 14.
5
Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5586-5593. doi: 10.1021/acsami.7b18506. Epub 2018 Jan 31.
6
ZnO Nanorod-Induced Heteroepitaxial Growth of SOD Type Co-Based Zeolitic Imidazolate Framework Membranes for H Separation.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):4151-4160. doi: 10.1021/acsami.7b17568. Epub 2018 Jan 22.
7
Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.
Materials (Basel). 2017 Oct 6;10(10):1159. doi: 10.3390/ma10101159.
8
Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
ACS Nano. 2017 Aug 22;11(8):7974-7987. doi: 10.1021/acsnano.7b02523. Epub 2017 Jul 19.
9
Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties.
Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201701631. Epub 2017 Jul 3.
10
Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications.
Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201700277. Epub 2017 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验