Werner Philipp, Wächter Tobias, Asyuda Andika, Wiesner Adrian, Kind Martin, Bolte Michael, Weinhardt Lothar, Terfort Andreas, Zharnikov Michael
Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany.
Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39859-39869. doi: 10.1021/acsami.0c10513. Epub 2020 Aug 20.
To understand the influence of the molecular dipole moment on the electron transfer (ET) dynamics across the molecular framework, two series of differently fluorinated, benzonitrile-based self-assembled monolayers (SAMs) bound to Au(111) by either thiolate or selenolate anchoring groups were investigated. Within each series, the molecular structures were the same with the exception of the positions of two fluorine atoms affecting the dipole moment of the SAM-forming molecules. The SAMs exhibited a homogeneous anchoring to the substrate, nearly upright molecular orientations, and the outer interface comprised of the terminal nitrile groups. The ET dynamics was studied by resonant Auger electron spectroscopy in the framework of the core-hole clock method. Resonance excitation of the nitrile group unequivocally ensured an ET pathway from the tail group to the substrate. As only one of the π* orbitals of this group is hybridized with the π* system of the adjacent phenyl ring, two different ET times could be determined depending on the primary excited orbital being either localized at the nitrile group or delocalized over the entire benzonitrile moiety. The latter pathway turned out to be much more efficient, with the characteristic ET times being a factor 2.5-3 shorter than those for the localized orbital. The dynamic ET properties of the analogous thiolate- and selenolate-based adsorbates were found to be nearly identical. Finally and most importantly, these properties were found to be unaffected by the different patterns of the fluorine substitution used in the present study, thus showing no influence of the molecular dipole moment.
为了理解分子偶极矩对跨分子框架的电子转移(ET)动力学的影响,研究了通过硫醇盐或硒醇盐锚定基团与Au(111)结合的两个系列不同氟化的基于苯甲腈的自组装单分子层(SAMs)。在每个系列中,除了影响形成SAM分子偶极矩的两个氟原子位置不同外,分子结构相同。SAMs对基底表现出均匀的锚定、近乎垂直的分子取向,且外界面由末端腈基组成。在芯孔时钟法的框架下,通过共振俄歇电子能谱研究了ET动力学。腈基的共振激发明确确保了从尾端基团到基底的ET途径。由于该基团的π轨道中只有一个与相邻苯环的π体系杂化,根据初级激发轨道是定域在腈基上还是离域在整个苯甲腈部分上,可以确定两种不同的ET时间。结果表明,后一种途径效率更高,其特征ET时间比定域轨道的ET时间短2.5至3倍。发现类似的基于硫醇盐和硒醇盐的吸附质的动态ET性质几乎相同。最后且最重要的是,发现这些性质不受本研究中使用的不同氟取代模式的影响,因此表明分子偶极矩没有影响。