Suppr超能文献

嵌入式偶极子作为表面工程多功能工具的概念。

Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering.

机构信息

Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.

Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany.

出版信息

Acc Chem Res. 2022 Jul 5;55(13):1857-1867. doi: 10.1021/acs.accounts.2c00173. Epub 2022 Jun 3.

Abstract

Controlling the physical and chemical properties of surfaces and interfaces is of fundamental relevance in various areas of physical chemistry and a key issue of modern nanotechnology. A highly promising strategy for achieving that control is the use of self-assembled monolayers (SAMs), which are ordered arrays of rodlike molecules bound to the substrate by a suitable anchoring group and carrying a functional tail group at the other end of the molecular backbone. Besides various other applications, SAMs are frequently used in organic electronics for the electrostatic engineering of interfaces by controlling the interfacial level alignment. This is usually achieved by introducing a dipolar tail group at the SAM-semiconductor interface. Such an approach, however, also changes the chemical character of that interface, for example, affecting the growth of subsequent layers. A strategy for avoiding this complication is to embed polar groups into the backbones of the SAM-forming molecules. This allows disentangling electronic interface engineering and the nucleation of further layers, such that both can be optimized independently. This novel concept was successfully demonstrated for both aliphatic and aromatic SAMs on different application-relevant substrates, such as gold, silver, and indium tin oxide. Embedding, for example, ester and pyrimidine groups in different orientations into the backbones of the SAM-forming molecules results in significant work-function changes. These can then be fine-tuned over a wide energy range by growing mixed monolayers consisting of molecules with oppositely oriented polar groups. In such systems, the variation of the work function is accompanied by pronounced shifts of the peaks in X-ray photoelectron spectra, which demonstrates that electrostatically triggered core-level shifts can be as important as the well-established chemical shifts. This illustrates the potential of X-ray photoelectron spectroscopy (XPS) as a tool for probing the local electrostatic energy within monolayers and, in systems like the ones studied here, makes XPS a powerful tool for studying the composition and morphology of binary SAMs. All these experimental observations can be rationalized through simulations, which show that the assemblies of embedded dipolar groups introduce a potential discontinuity within the monolayer, shifting the energy levels above and below the dipoles relative to each other. In molecular and monolayer electronics, embedded-dipole SAMs can be used to control transition voltages and current rectification. In devices based on organic and 2D semiconductors, such as MoS, they can reduce contact resistances by several orders of magnitude without adversely affecting film growth even on flexible substrates. By varying the orientation of the embedded dipolar moieties, it is also possible to build p- and n-type organic transistors using the same electrode materials (Au). The extensions of the embedded-dipole concept from hybrid interfaces to systems such as metal-organic frameworks is currently underway, which further underlines the high potential of this approach.

摘要

控制表面和界面的物理和化学性质在物理化学的各个领域都具有根本的重要性,也是现代纳米技术的关键问题。实现这种控制的一种极具前景的策略是使用自组装单分子层(SAMs),它是通过合适的锚固基团与基底结合的棒状分子有序排列,并在分子主链的另一端带有功能尾基团。除了各种其他应用外,SAM 还经常用于有机电子学中,通过控制界面的能级对准来进行静电工程界面。这通常通过在 SAM-半导体界面引入偶极尾基团来实现。然而,这种方法也会改变该界面的化学性质,例如影响后续层的生长。避免这种复杂性的一种策略是将极性基团嵌入 SAM 形成分子的主链中。这使得电子界面工程和后续层的成核可以分开,从而可以独立地对它们进行优化。这种新的概念已在不同的相关应用基底上的脂肪族和芳香族 SAM 上成功证明,例如金、银和铟锡氧化物。例如,以不同的取向将酯和嘧啶基团嵌入 SAM 形成分子的主链中,会导致功函数发生显著变化。然后,可以通过生长由具有相反取向的极性基团的分子组成的混合单层来在宽能区范围内对其进行微调。在这样的系统中,功函数的变化伴随着 X 射线光电子能谱中峰的明显位移,这表明静电触发的芯能级位移与已建立的化学位移一样重要。这说明了 X 射线光电子能谱(XPS)作为一种探测单层内局部静电能的工具的潜力,并且在像这里研究的系统中,XPS 成为研究二元 SAM 组成和形态的有力工具。所有这些实验观察都可以通过模拟进行合理化,模拟表明,嵌入偶极基团的组装在单层内引入了一个电势不连续,使得偶极子上方和下方的能级相对于彼此发生位移。在分子和单层电子学中,嵌入偶极子的 SAM 可用于控制过渡电压和电流整流。在基于有机和二维半导体的器件中,例如 MoS,它们可以将接触电阻降低几个数量级,而不会对即使在柔性基底上的薄膜生长产生不利影响。通过改变嵌入偶极子的取向,还可以使用相同的电极材料(Au)构建 p 型和 n 型有机晶体管。目前正在将嵌入式偶极概念从混合界面扩展到金属有机骨架等系统,这进一步强调了这种方法的高潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b400/9260959/ead97ef9212e/ar2c00173_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验